
TCE Exercise: Tremor Audio Decoder on TTA

TCE Exercise: Tremor Audio Decoder on TTA by Otto Esko is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

http://tce.cs.tut.fi/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

General information
You need to have TCE tools installed on your computer in order to complete this exercise. TCE
tools can be downloaded from http://tce.cs.tut.fi/download.html.
In this you will compile and simulate Tremor Ogg Vorbis [1] on several TTA processors to see how
changes in the architecture affects performance. Tremor Audio Decoder software sources used in this
exercise should have been shipped with this document. The sources have been modified to suite the
needs of this exercise and allow easy compilation, simulation and verification process.

Directory 'tremor_tta' contains the Tremor source codes and all the essential files. All the commands
in these instructions assume that your current working directory is tremor_tta .

Directory tremor_tta/adf contains the TTA processors which will be used in this task.

There are also three short ogg vorbis samples which are stored in tremor_tta/input_samples. These
samples are published under Creative Commons license. Samples are authored by Michael David
Crawford (sahara) and CambridgeBayWeather (a_canadian_boat_song and aiken_drum). See file
tremor_tta/input_samples/attribution.txt for more information. The samples have been cut to a
length of 20 seconds to speed up the exercise.

Directory tremor_tta/ref_output contains decoded raw bitstreams of the input samples. These raw
bitstreams will be used to verify correct behavior of the decoder.

Test process
You need to modify the Makefile in tremor_tta directory to change the processor architecture you are
using. This can be done by changing the architecture definition file (ADF) variable in the Makefile. By
default it is adf/minimalistic.adf. Use a text editor (such as gedit or kate) for modifications.

Use TTA Processor Design-tool (ProDe) to view the architecture. ProDe can be started from command
line with command:
prode &
You can also give the adf file as a command line parameter:
prode processor.adf &
where processor.adf is the name (and path) of the desired ADF.

To compile and simulate tremor against the selected architecture, simply run make:
make
Make will compile the source codes and execute ttasim instruction set simulator, which will output
statistics of processor resource utilization as well as execution cycle count. Write down the cycle count
for each architecture.

Successful simulation will create an output file called output.raw which contains the decoded raw pcm
bitstream. To verify that the result is correct, you must compare it to the reference output file. This file
is given to you and it has been generated by decoding the same input file on a desktop PC version of
Tremor audio decoder. We assume that the correct behavior of Tremor has been verified on desktop PC
so we can use the desktop PC version as reference.

http://tce.cs.tut.fi/download.html

By default, Makefile uses a_canadian_boat_song_20s.c as input data and the corresponding reference
output file is ref_output/ref_a_canadian_boat_song_20s.raw. You can easily compare simulation
output and reference output by using diff command:
diff --brief output.raw ref_output/ref_a_canadian_boat_song_20s.raw
If the command does not output anything, the two files were identical. If the files differ, the command
will output: Files output.raw and ref_output/ref_a_canadian_boat_song_20s.raw differ
You can also play the raw output file using the play_raw.sh script in tremor_tta directory. The script
invokes sox program to play the output. Here is the command how to use the script:
./play_raw.sh output.raw
If you don't want to listen the whole sample, press ctrl+c to quit the program. Please notice that the
script may not work if you have different version of sox installed.

Task 1: Evaluate architectures
Perform the steps described in Test process for the processor architectures listed below and collect the
execution cycle counts. The processor architectures to be tested in this task are:

• minimalistic.adf

• minimalistic_improved.adf

• three_bus_std_mul.adf

• six_bus_std_mul.adf

• ten_bus_std_mul.adf

• clustered_mul4.adf (simulation takes a long time with this architecture!)

◦ Interconnection network of this architecture has been modified to increase maximum clock
frequency

• rather_huge.adf

If you notice strange behavior after changing architecture, it might be a good idea to run:
make clean
and try again.

Questions for task 1:
1. List the execution cycle counts for all the tested architectures

2. Why does the execution clock cycle count reduce when minimalistic_improved.adf is used
compare to minimalistic.adf even though both architectures have the same computational
resources?

3. Why the difference in execution cycle count is small between ten_bus_std_mul.adf and
rather_huge.adf even though rather_huge.adf has much more computational resources than the
other architecture?

4. Length of the audio sample is 19.98 seconds. Calculate the minimum clock frequency (in MHz)
for decoding the audio sample in real time for each simulated architecture. (Hint: minimum
frequency is equal to the required number of clock cycles per decoded audio second)

Task 2: Custom operations
In this task you will test whether or not it would be helpful to use custom operations with this
application. One obvious candidate for custom operation would be mdct because it contains heavy
computation. But there are also other smaller operations which can potentially result in good speed up.
For example mdct uses custom multiplication operations which are emulated on software by default.
These custom multiplication operations multiply two 32-bit signed integers and produce internally a
64-bit result. The result of the whole operation is a 32-bit signed integer which is taken, depending on
the operation, from different positions of this 64-bit internal result.

These operations are originally defined in file misc.h and their TTA counterparts (custom operation
macros calls) are defined in multiplications.h. Take a look if you're interested.

Your task is now to enable custom multiplication operations for one architecture. Let's use the
three_bus_std_mul.adf as our starting point. First copy the architecture:
cp adf/three_bus_std_mul.adf adf/three_bus_custom_mul.adf
and then open the copy with ProDe:
prode adf/three_bus_custom_mul.adf &
Next, remove the multiplication function unit and it's input and output sockets. Then add the custom
multiplication function unit from tremor.hdb (Edit -> Add from HDB -> select mul(2), mult32s(2),
mult31s(2), mult30s(2), mult30s_shifted15s(2) -> click Add -> click OK). Then select Tools -> Fully
Connect IC and save the architecture.

Now open the Makefile and change the ADF variable's value the new architecture you created. This
time you also have to add -DMULT_OPS to USER_COMPILER_SWITCHES in order to enable
custom operations in the code. Then run make clean and proceed to compile, simulate and verify like
done earlier.

Questions for task 2:
1. What is the execution cycle count now?

2. How much is the speed up compared to three_bus_std_mul.adf?

3. Calculate the minimum clock frequency (in MHz) for real time decoding of the audio sample.

Task 3: How input data affects execution time
In this task you will study the affect of input data on execution time using the architecture created in
previous task (three_bus_custom_mul.adf) using custom multiplication operations. There are three
input samples (44.1 kHz sample rate, stereo):

• input_samples/a_canadian_boat_song_20s.c

◦ 44.1 kHz sample rate, 2 channels, average bitrate of 364 kbps

◦ length: 19.98 seconds

• input_samples/aiken_drum_20s.c

◦ 44.1 kHz sample rate, 2 channels, average bitrate of 365 kbps

◦ length: 19.96 seconds

• input_samples/sahara_20s.c

◦ 44.1 kHz sample rate, 2 channels, average bitrate of 185 kbps

◦ length: 19.97 seconds

You can change the input sample by modifying input_data variable in the Makefile (see the comments
in the Makefile for further instructions). Then execute:
make clean && make
and collect the results. Remember to verify the output.

Questions for task 3:
1. Calculate clock cycle count per decoded audio seconds for all input data samples.

2. Does input data affect decoding cycle count per audio second? Why?

Questions in general:
1. Up to this point we have measured performance in clock cycles but the execution run time is

more interesting and descriptive measure of performance. Table 1 introduces synthesis results,
i.e. logic element usage and maximum clock frequency, on a Stratix II FPGA for some of the
architectures. Use the maximum clock frequencies to calculate execution run times for the
architectures listed in table 1. List the calculated execution run times.

2. Using results from question 1 and information from table 1:

a. Draw a graph of logic element usage vs. run time for the architectures.

b. Draw a graph of logic element usage vs. execution clock cycle count

c. How does the usage of custom operations show in the graphs? Speculate, is it better to try to
find and use custom operations than to increase “standard” computational resources on the
processor?

3. Calculate execution clock cycles per decoded audio output second ratio for all the architectures
in table 1 and draw a figure of it.

4. Using the results from previous question, which architecture (excluding
three_bus_custom_mul) would be fastest

a. at 50 MHz clock frequency?

b. at 75 MHz clock frequency?

c. at 100 MHz clock frequency?

5. What benefits and opportunities customizable architecture brings to DSP applications?

Table 1: Synthesis results for Stratix II

Architecture Logic Elements fmax / MHz
minimalistic.adf 1214 141
minimalistic_improved.adf 1782 115
three_bus_std_mul.adf 2825 111
three_bus_custom_mul.adf 2931 106
six_bus_std_mul.adf 5637 90
clustered_mul4.adf 5218 149
ten_bus_std_mul.adf 11280 74

Documentation
These documents are referred in the work instructions.

[1] Tremor Ogg Vorbis home page, http://xiph.org/vorbis/

	TCE Exercise: Tremor Audio Decoder on TTA
	General information
	Test process
	Task 1: Evaluate architectures
	Questions for task 1:

	Task 2: Custom operations
	Questions for task 2:
	Task 3: How input data affects execution time
	Questions for task 3:
	Questions in general:

	Documentation

