
Architecture Definition File

Processor Architecture Definition File Format
for a New TTA Design Framework

Authors: A. Cilio (Tampere University)
H.J.M. Schot (TNO-FEL)
J.A.A.J. Janssen (TNO-FEL)
Pekka Jääskeläinen (Tampere University)
Kati Tervo (Tampere University)

Architecture Definition File Format for a New TTA Design Framework V1.9.0 1/57

TUNI
TNO-FEL

Unit of Computing Sciences

TNO Physics and Electronics Laboratory

Summary

This document gives the complete reference specification of the Architecture
Definition File Format (ADFF) for a TTA codesign framework. This format is used to
specify the Architecture Definition File (ADF) used to define a target TTA processor’s
architecture. The work presented in this document is a joint effort of Tampere
University (Finland) and TNO-FEL (The Netherlands).

Architecture Definition File Format for a New TTA Design Framework V1.9.0 2/57

Document History

Version Date Author Comment

0.1 07/02/03 A. Cilio First draft of the document.

0.2 14/02/03 J.A.A.J.
Janssen

Comments after review

0.3 21/02/03 H.J.M. Schot Comments after review

0.4 14/03/03 A. Cilio Complete review of comments in v0.2-0.3 and decisions
taken during conference call on 10.03.03.

0.5 24/03/03 A. Cilio Partial revision after conference calls on 17.03 and 20.03.

0.6 17/04/03 A. Cilio Complete revision after conference calls up to 24.03 and
comments sent by email.

0.7 06/05/03 H.J.M. Schot Additions to MDF implementation.

0.7b 07/05/03 H.J.M. Schot XML encoding definition.

0.7c 07/05/03 A. Cilio Completed draft of MDF specification in XML format.

0.7d

0.7e 08/05/03 A. Cilio Comments to MDF encoding appendix.

0.7f 12/05/03 H.J.M. Schot Updated comments to MDF encoding appendix.

0.7g 15/05/03 A. Cilio Revised MDF implementation. Added section on validation.
Revised MDF encoding appendix.

0.7h 20/05/03 H.J.M. Schot Simplified pipelining model Function Units

0.7i 22/05/03 A. Cilio Added new guard support declaration. Modified and
commented MDF implementation.

0.7m 03/06/03 A. Cilio Modifications to port declaration syntax in long immediate
block (mostly undoing a change in 0.7i).

0.8 27/06/03 J.A.A.J.
Janssen

Finalizing document.

0.9 16/07/03 A. Cilio Corrections and comments. RF type, socket declaration.

0.10 31/07/03 J.A.A.J.
Janssen

Comments and corrections to last modifications.

0.11 01/08/03 A. Cilio Added segmented and clustered transport networks.

0.12 01/10/03 A. Cilio Added latency to Immediate Unit. Added read/write acces
constraint parameters to RF definitions. Relaxed Bridge/Bus
connection limits. Defined empty instruction template.
Redefined completely the operation input/output
specifications, FU Port properties, Execution Pipeline
specifications. Reintroduced transport pipeline declaration.
Many other minor corrections.

0.13 22/10/03 A. Cilio Modifications to address space declaration and references.
Revised description of pipeline model. Corrected 0 start-
cycle.

0.14 7/11/03 A. Cilio Corrections according to comments of J. Heikkinen and V.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 3/57

Version Date Author Comment

Guzma. Changes to pipeline declaration, added example of
zero-latency operations.

0.15 13/11/03 A. Cilio Redefined segmented bus and clustering specifications.

0.16 02/12/03 A. Cilio Reorganised validity constraints. Added width to GCU ports.

1.0 28/01/04 A. Cilio Added bus XML constraint (mandatory segment element, at
most one unconditional guard per bus).

1.0.1 12/02/04 A. Cilio Clarified description of the pipeline resource model.

1.0.2 11/03/04 A. Cilio Added dependency diagram between top-level elements.

1.0.3 19/03/04 A. Cilio Revision after meeting at NRC, Helsinki, on 17.03.

1.0.4 26/04/04 A. Cilio Complete revision of validity constraints. Segment element
optional again. Address space always mandatory, but its
word width can be empty in control unit.

1.0.5 06/05/04 A. Cilio Important correction in a complex socket XML constraint.

1.0.6 29/06/04 A. Cilio Added socket constraint about non-straddling unit. Added
definition of Unique Name Attribute. Minor corrections.

1.0.7 03/09/04 A. Cilio Corrected and added range constraints of certain integer
parameters. Binding of operation outputs to FU ports not
mandatory. Relaxed canonicity constraint. Minor corrections.

1.1 10/10/04 A. Cilio Format revision. Renamed ‘MDF’ to ‘ADF’. Changed
pipeline declaration and GCU ports. Removed address space
interleaving factor. Minor corrections throughout. Rejected
distinction of actual ‘trap’ operation from simulator hook.

1.1.1 12/10/04 A. Cilio Revision after review by L. Laasonen.

1.1.2 08/01/05 A. Cilio Clarified and relaxed constraints of instruction template.

1.2 17/01/05 A. Cilio Restricted character set of Unique Name Attribute. Revised
GCU. Removed control element, added port element. Added
constraint to bind element of hardware operations.

1.3 26/01/05 A. Cilio Revision after review by L. Laasonen and A. Oksman.
Introduced special-port in GCU.

1.3.1 28/01/05 A. Cilio Element return-address mandatory and nillable.

1.3.2 21/02/05 A. Cilio Legal name of operations restricted to lower case.

1.4 05/05/05 A. Cilio Revised guard support, added “always-false” expression.

1.5 19/05/05 A. Cilio Added immediate-slot element. Clarified that the choice of
immediate register in instruction template tag is orthogonal.

1.5.1 11/08/05 A. Cilio Clarifications regarding bit width adjustment.

1.5.2 05/01/06 P. Jääskeläinen Allow underscore in operation names.

1.5.3 09/02/06 L. Laasonen Minor clarification about how sockets are connected to
buses.

1.6 13/04/06 A. Cilio Added guard-latency elements.

1.6.1 25/04/06 A. Cilio Removed local guard latency. Global latency can be zero.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 4/57

Version Date Author Comment

1.6.2 11/05/06 L. Laasonen Removed the constraints of max reads and max rw of
Register File. Added local guard latency for Register File.

1.6.3 30/05/06 L. Laasonen Removed XML validity constraints concerning socket-
segment and socket-port connections if there are bridges in
the machine.

1.6.4 06/09/07 P.Jääskeläinen The 'transport-stages' property of control unit declaration
replaced with more generic 'delay-slots' property (minimum
value zero).

The guard-latency property of RF (and IU) can be either 0 or
1 only. Added 'max-writes', removed 'max-rw'.

Immediate Unit: Unified the with RF. Removed the 'cycle'
property (latency fixed to 1). 'max-writes' is always 1 and its
not sanity checked against the count of write ports attached
to it. Clarifications to the Immediate Support Chapter.

RF ports cannot be reused by multiple buses, thus the same
port cannot be read by multiple moves at the same cycle.
This differs from FU output ports in which case the same
port can be read by any number of times through different
connected buses.

1.7 17/10/07 P.Jääskeläinen Upped the version number. From now on, changes that do
not modify the actual format should increment only the third
number of the version number. Thus, the second number
denotes the actual ADF format version between which
compatibility is not guaranteed. This is mainly because XML
schema supports only one level of subversions.

This version of ADF is the one used in TCE v1.0.

1.7.1 08/03/10 P.Jääskeläinen Added the reasoning behind leaving the upper bits undefined
when reading from a narrower source to a wider to the
socket section.

1.7.2 22/12/14 P.Jääskeläinen Reversed the earlier constraint that RF ports cannot be
reused by multiple buses. It is now officially possible to
read the same register to multiple buses through the same RF
port. If referring to different indices, the result is undefined.

1.8.0 17/07/19 K.Tervo Added little-endian tag as a top-level specifier. ADFs
without the specifier are assumed to be big-endian.

1.9.0 17/07/19 K.Tervo Changed guard evaluation logic in Transport Buses. Now,
the result of the guard evaluation is simply the least
significat bit, rather than a reduction OR of the value.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 5/57

Table of Contents

1.Introduction...8

2.Endianess...11

3.Transport Buses...12

3.1.Parameters..12

3.2.Remarks..12

3.3.Constraints..13

4.Sockets..14

4.1.Parameters..14

4.2.Remarks..14

5.Bridges..15

5.1.Parameters..15

5.2.Remarks..15

5.3.Constraints..15

6.Function Units...16

6.1.Parameters..16

6.2.Remarks..16

6.3.Constraints..16

7.Hardware Operations...17

7.1.Parameters..17

7.2.Remarks..17

7.3.Constraints..18

8.Register Files...19

8.1.Parameters..19

8.2.Remarks..19

8.3.Constraints..20

9.Immediate Support..21

9.1.Parameters..21

9.2.Remarks..22

9.3.Constraints..22

10.Address Space...24

10.1.Parameters..24

10.2.Remarks..24

10.3.Constraints..24

11.Global Control...25

11.1.Parameters..25

Architecture Definition File Format for a New TTA Design Framework V1.9.0 6/57

12.Future Enhancements..26

12.1.Hierarchical TTA..26

13.Format Conventions..28

13.1.Aliases..28

13.2.References..28

13.3.Empty elements..28

13.4.Naming convention for XML tags..28

14.Validation..29

15.General Constraints...30

15.1.Unique Name Attribute...30

16.ADF Declaration...31

17.Top-Level Declaration...32

18.Transport Bus Declaration...33

19.Guard Support Declaration..35

20.Socket Declaration..37

21.Bridge Declaration..38

22.Function Unit Declaration...39

23.Hardware Operation Declaration...41

24.Execution Pipeline Declaration...42

25.Register File Declaration...45

26.Address Space Declaration..47

27.Global Control Unit...48

28.Immediate Unit Declaration..51

29.Immediate Slot Declaration...53

Architecture Definition File Format for a New TTA Design Framework V1.9.0 7/57

1. Introduction

Microprocessors used in embedded systems often have specific requirements like low
cost, high performance and low power consumption. COTS microprocessors can not
always fulfill all requirements. A templated processor architecture, which can be
tuned for a certain application (domain), offers a solution. The Transport Triggered
Architecture (TTA) offers such templated processor architecture. TTAs combine
flexibility, modularity, and scalability and can be customised for use in a wide variety
of products, including image processing, telecommunications and consumer
electronics products.
The TTA concept is targeted for use in Application Specific Processors, or ASPs. A
TTA can be considered as a collection of Function units (FU’s) register files (RF’s),
Immediate units (IU’s), transport buses, and sockets. FU’s perform operations, RF’s
provide temporary fast accessible storage, the network of buses performs data
transports between the FU’s and RF’s, and sockets interface FU’s and RF’s to
transport buses. The designer can add as many types of FU’s and RF’s as required for
the application. When required, new application specific operations can be added to
speed up execution time. TTAs are programmed by data transports: a program is a
collection of moves that specify how data must be moved between FU’s and RF’s. As
a side effect of data transports, FU’s execute operations. A TTA can perform multiple
moves, and thus execute multiple operations, in parallel. The interconnection network
may be fully connected –in which case every socket is connected to all move buses–
or partially connected. A single bus can carry out one or more data transports in a
single cycle. In the latter case, the bus is subdivided into independently programmable
segments. TTAs can be clustered. In a clustered TTA, each bus belongs to one cluster
and can perform only data transports between RF’s and FU’s of the same cluster in
one cycle. Inter-cluster data transports are enabled by bridges, which connect busses
that belong to different clusters. To facilitate conditional execution, control flow
changing operations and predicated execution is supported. Figure 1 shows the
general structure of a TTA.

Figure 1. General structure of a TTA.

An instance of a TTA is specified with an Architecture Definition File. Such a file
describes the type and amount of resources (FU’s, RF’s, buses, sockets, etc.) and their
interconnections. This document gives the complete reference specification of the
Architecture Definition File Format (ADFF) on which ADF’s are based.
This document is split in two parts. In part 1 the requirements for the architecture

Architecture Definition File Format for a New TTA Design Framework V1.9.0 8/57

RF
FU FU FU

Socket Move Bus

definition format are identified. Based on these requirements an XML specification is
proposed. This XML specification is presented in part 2.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 9/57

Part 1: Requirements

In this part the requirements of the ADF are specified. For each component of the
processor the relevant parameters are identified. In addition, constraints of the
architecture template are given.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 10/57

2. Endianess

An architecture may be either big-endian or little-endian. The endianess determines
the default data layout used for the architecture and, by extension, the load and store
operations used to access data. In a little-endian architecture, an integer word that is
composed of multiple minimum addressable units of an address space is arranged in
memory with the least significant unit in the lowest address and the most significant
unit in the highest address, while a big-endian architecture arranges them in reverse.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 11/57

3. Transport Buses

The function of transport buses is to transport (or move) data between processor units
(Function Units, Register Files, Immediate Units, Global Control).

3.1.Parameters

Transport bus parameters

TB-1 Bit width of the bus data path.

TB-2 Support type for predicated execution of transports.

TB-3 Segmentation.

TB-4 Sockets connected to the bus.

3.2.Remarks

TB-1: The bit width of the bus data path must be a positive integer number.

TB-2: The support type for predicated execution is specified independently for each
transport bus. Two types of predicated execution are supported:

1. Unconditional execution
A data transport is unconditionally executed when its execution does not
depend on machine state. There are two situations where unconditional
execution can take place.

1. When predication is not supported at all on a bus. In this case, it is
implied that a transport is always carried out to completion.

2. When predication is supported on a bus, and a special guard expression
that represents the “always true” condition is selected for a move.1 In
this case, another type of unconditional guard, which represents the
“always false” condition, can be supported by the same bus.2

2. Conditional execution
The execution condition is expressed in the form of a guard expression. Guard
expression specifications are made of the following elements:

1. Boolean register terms. These terms refer to a register in a register file
and represent its contents (treated as a Boolean value);

2. Function Units result terms. These terms refer to the result port of a
function unit and make it possible to forward the result of an operation
(treated as a Boolean value –typically, a comparison result) to the
predicate evaluation logic;

3. An optional binary operator that applies to two guard terms and
computes a logical operation. An operator combines the Boolean value
of two terms into one Boolean value. Two operators are admitted:

a. Logical intersection (and);
b. Logical union (or);

1 For practical reasons of programmability, it is recommendable that any bus that supports one or more
guard expressions should support also the special “always true” Boolean expression.
2 For efficient implementation of decoding logic, it is reasonable to assume that the “always-false”
guard expression is supported when an “always-true” expression is.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 12/57

4. An optional unary operator that applies to a single guard term (and so
has precedence over binary operators) and inverts its value.

TB-3: A bus may be subdivided into segments. A data transport on a segmented bus
can span one or more segments. A segmented bus can perform several transports in a
single cycle, as long as the sequences of segments used by the transports do not
overlap. Each segment is fully programmable like an independent bus.

Evaluation of a guard term. When a GPR or an output from a function unit is
evaluated as term of a guard expression, only the least significant bit is considered. If
the bit is 1, then the guard term evaluates to true, otherwise, it evaluates to false.

3.3.Constraints

1. At least one transport bus must support the minimum level of predicate execution
support needed to make program control flow possible. The minimum level of
predicate execution support is defined as:

a. One register term or Function Unit result term;

b. Support for the logical negation unary operator.

2. The segments of a bus must form one unidirectional chain whereby a segment
may be driven by another segment and may drive a third segment.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 13/57

4. Sockets

Sockets are programmable connections. Each socket connects one or more sources or
destinations with one or more transport buses. Sources and destinations may be
input/output ports of various types of components: Function Units, Immediate Units,
or Register Files. In the rest of this document, any source or destination will be
generically referred to as port.

4.1.Parameters

Socket parameters

S-1 Bus segments connected to the socket.

S-2 Direction of the socket (input/output).

4.2.Remarks

S-s: Sockets are either input or output. Bidirectional sockets are not supported.

Port-socket connection: A socket can read from or write to several ports. The ports
connected to a socket can belong to different components (Function Units, Register
Files, Immediate Unit and Global Control). Thus, several ports can share a socket.

Socket bit width: The bit width is not a parameter of a socket, but rather of individual
port-bus connections. The bit width of a connection depends on the bus and the port
bit width. When the bit widths are not equal, four cases can occur:

1. Input socket: width(bus) > width(destination).

2. Input socket: width(bus) < width(destination).

3. Output socket: width(bus) > width(source).

4. Output socket: width(bus) < width(source).

In cases (1) and (4), a number of incoming data lines are simply not connected
through to, respectively, the destination port or the bus. This type of connections can
be used on condition that the data is transported without losing significant bits.

Case (2) is the most problematic. An extension of the data coming from the bus must
take place. The bits undergoing extension are by definition undefined. No assumption
should be made about the value of the extended bits; programs should not depend on
those bits.

Also in case (3), the values on the bus lines not connected to the output port are
undefined.

In all cases, the bits involved in extension or reduction are those that occupy the most
significant bit positions, i.e., the least significant bits are aligned.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 14/57

5. Bridges

Bridges are optional components. By specifying bridges, it is possible to describe
clustered architectures.

A bridge can be programmed to write the value currently on a bus onto another bus. A
bridge takes one cycle to drive the output bus with the value read from the input bus.
Two busses connected by a bridge become segments of a longer transport path. A path
is thus a chain of two or more busses.

5.1.Parameters

Bridge parameters

BR-1 Input bus connected to the bridge.

BR-2 Output bus connected to the bridge.

5.2.Remarks

BR-1: A bridge is unidirectional and reads from one and only one input bus. In turn,
an input bus can be connected to the output of another bridge.

BR-2: A bridge is unidirectional and writes onto one and only one output bus. In turn,
an output bus can be connected to the input of another bridge.

The equivalent of a bidirectional bridge is modeled by two independent bridges
attached to the same bus pair, but with opposite direction.

5.3.Constraints

1. A bus chain cannot form a cycle, that is, there is never a path such that it is
possible for the output bus of a bridge to drive its value onto the input bus.

2. A bus can be connected to no more than two other busses by at most four bridges
(two output and two input bridges).

3. No socket can write to (or read from) two busses of the same bus chain.

4. No socket can write to (or read from) two busses B1, B2 if there exists another
socket that writes to (or reads from) B1 and also writes to (or reads from) a bus B3
that is joined to B2 through more than one bridge.

5. Given a socket connecting two busses B1, B2, no other socket can write to or read
from two other busses B3, B4 of the same bus chains to which, respectively B1 and
B2 belong unless B3, B4 are in the same relative position with respect to B1 and B2.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 15/57

6. Function Units

A Function Unit (FU) implements one or more operations of the target architecture’s
instruction set. An FU communicates with the rest of the processor through a number
of input/output ports.

6.1.Parameters

Function Unit parameters

FU-1 Supported operation set.

FU-2 Input and output ports (operands and results of operations).

FU-3 Bit width of input and output ports.

FU-4 Binding between sockets and ports.

FU-5 Memory address space accessed by the FU.

6.2.Remarks

FU-1: The operations implemented in a Function Unit are referred to as Hardware
Operations, described in Section 7.

FU-3: For each port the bit width is specified independently.

FU-4: For each port the connected socket is independently specified. Several ports
(even belonging to different units) can share the same socket. Thus, sockets are not
necessarily tied to a single port.

FU-5: If an FU contains Hardware Operations that can access memory (see Section
7), then the FU declaration must specify the address space (described in Section 9.3)
that is accessed by the FU.

6.3.Constraints

1. Each FU input (output) port is connected to only one input (output) socket.

2. A FU port can be connected to two sockets, one writing to and one reading from
busses. In this case, the port is bidirectional.

3. If one of the containing Hardware Operations accesses memory, then the FU
declaration must contain an address space specification.

4. A FU can access only one memory address space.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 16/57

7. Hardware Operations

Hardware Operations represent the physical implementation of an operation onto a
specific FU. As such, Hardware Operations are part of the FU declaration, because
their properties are fully defined by a combination of their individual properties and
the FU properties.

7.1.Parameters

Hardware Operation parameters

HO-1 Parent Function Unit.

HO-2 Name of the base operation.

HO-3 Binding between operands/results of the operation and FU ports.

HO-4 Pipeline modelling specification.

7.2.Remarks

HO-1: Each Hardware Operation belongs to one and only one Function Unit.

HO-2: The name of the operation uniquely identifies the operations performed, its
properties and the number of inputs and outputs. This information is collected in a
separate database [] and is out of the scope of this document.

HO-3: A Hardware Operation must specify the binding between the inputs and
outputs of the base operation and the ports of the Function Unit. This is an additional
degree of freedom: it is possible to specify separate FU Ports for each input and
output of different operations.

HO-4: A Hardware Operation must contain the specification of its execution pipeline.

Pipeline Model. Pipelines are defined using the concept of resource. Usually, a
resource represents a piece of hardware that implements part of the pipeline, but in
abstract, any constraint in how a pipeline is used can be modeled by means of
resources. A resource is identified by an arbitrary name string that is unique within the
Function Unit scope. A pipeline declaration consists of a finite sequence of resource
usage elements. Each element stands for one or more cycles in which pipeline
resources are claimed, and consists of one or more resource identifiers combined with
the following two syntactic elements: (1) union of resource identifiers (= two
otherwise independent resources are claimed simultaneously) and (2) repetition of
resource usage (= the resource usage extends for a given number of cycles).

A few examples should clarify the use of this model. Unions are indicated by “+”;
repetitions by “^”, and sequence element separators by blank spaces. The syntax used
is arbitrary. The implied scope for a resource usage element is the entire FU.

Example 1: Unpipelined, 5-cycle (integer) multiply

s1^5

Example 2: Fully pipelined, 4-stage load

s1 s2 s3 s4

Architecture Definition File Format for a New TTA Design Framework V1.9.0 17/57

Example 3: Floating-point divide operation with a 2-cycle unpipelined unpack and a
2-cycle pipelined pack phase and a 10-cycle unpipelined computation phase, where
one cycle of the computation phase overlaps with the unpack phase

s1 s1+s2 s2^9 s3 s4

This model of pipeline declaration provides a mechanism to specify whether two
operations compete for the same resources. If two Hardware Operations in a Function
Unit have exactly the same execution pipeline declaration, then the same pipeline
implements both operations. If the pipeline declarations contain a reference to the
same resource usage element, then the two operation pipelines have a block of
hardware in common. The semantic of a resource usage element is comparable to that
of the bits in reservation vectors often used by instruction schedulers.

Independent operation pipelines. The pipeline is a property of individual operation
implementations, not FU’s. It is possible to have an FU with multiple, independent
pipelines. Since independent physical ports can be associated to operand/results of
operations, operations on the same FU may use completely independent hardware
resources. An FU with such operations is distinguishable from multiple FU’s solely by
the limitation of admitting one trigger per cycle.

Late-incoming operands. For some operations a non-triggering operand is allowed to
arrive later than the triggering operand. The pipeline model captures this behaviour.

7.3.Constraints

1. If there are Hardware Operations that can access memory in a Function Unit, they
must all access the same Address Space. Bank access, if necessary, is resolved at
run time.

2. The inputs and outputs of a Hardware Operation cannot share the same Port.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 18/57

8. Register Files

A register file (RF) is an array of registers that can be read or written through the
same set of ports. Within an RF, each register has a unique name (index).

8.1.Parameters

Register File parameters

RF-1 RF type: non-reserved, reserved, volatile.

RF-2 Bit width of the RF.

RF-3 Number of register in the RF.

RF-4 List of RF-ports.

RF-5 Binding between sockets and RF-ports.

RF-6 Maximum number of concurrent writes. If multiple concurrent
writes to the same register in the register file is done, the stored
value is undefined.

RF-7 Maximum number of concurrent reads of registers in the
register file.

RF-8 Latency of registers, when used as guard terms.

8.2.Remarks

RF-1: Three types of RF types are distinguished:

1. Non-reserved RF’s: the registers in these RF’s are available for general use. Only
this RF type is supported in TCE v1.0.

2. Reserved RF’s: the registers in these RF’s are typically used to let the processor
communicate with external modules in a more orderly fashion. These RF’s contain
registers that are available with restrictions for general allocation. These registers
are assigned by the programmer and have global scope. Dataflow optimisations
and reordering of definition and uses can be applied with some special
restrictions.

3. Volatile RF’s: the registers in these RF’s are marked as volatile and can typically
be used for register-mapped I/O. These RF’s contain registers that are not
available for general allocation. These registers are assigned by the programmer
and have global scope. No dataflow optimisation or reordering may be applied to
definitions and uses of volatile registers.

RF-2: The bit width of the registers is specified per RF.

RF-3: Register files can have any number of ports. The number of ports is limited by
RF-6 and RF-7.

RF-4: For each port the connected socket is independently specified.

RF-8: Number of cycles (in addition to the global latency, described in Section 11) it
takes before a register of the RF can be used in a guard expression. This is either 0 or

Architecture Definition File Format for a New TTA Design Framework V1.9.0 19/57

1, and by default 0. That is, guard latency is restricted only by the global guard
latency (the control unit pipeline stage the guard is read at).

8.3.Constraints

1. Each RF input (output) port is connected to only one input (output) socket.

2. Each bidirectional port is connected to two sockets, one input and one output

3. Two or more ports in the same RF cannot be connected to the same socket. Each
port of the RF is connected to a different socket. The port, however, can share the
socket with ports of other units (Function Units, Register Files, etc.).

4. RF ports can be accessed by multiple buses at the same time, thus the same port
can be read by multiple moves reading the same register at the same cycle. In case
the register index in the multiple moves differs, the result is undefined.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 20/57

9. Immediate Support

TTA Immediate support makes it possible to store constant numbers into the
instructions of a TTA program. Currently, the specifications in this section assume
bus-programmed target TTA processors.

9.1.Parameters

Two types of immediates are supported:

1. Inline immediates. An inline immediate is encoded in the instruction field
normally used to encode the source address of a transport. The field belongs
to the same move slot where the transport that reads the immediate is encoded.
For this reason, an inline immediate is related to the bus that transports it.
Support for inline immediates is defined by the following parameters:

Inline immediate parameters

II-1 List of buses that can transport inline immediates.

II-2 Bit width of the longest inline immediate that can be encoded in
each move slot.

II-3 Extension mode (sign or zero).

2. Long immediates and Immediate Units. Long immediates are encoded in
one or more fields of the instruction stream. Immediate units are optional
components that store constants from the instruction stream and make them
accessible to the processor datapath just like any other programmable data
source. An immediate unit is a register file whose register contents are
determined by the long immediates encoded in the instruction stream, thus
written only by the control unit directly. A single instruction can contain
multiple long immediates, each destined to a different Immediate Unit. Thus,
Immediate Unit is a Register File with only read ports exposed to the data
path, and a single write port connected directly to the control unit (implicit in
implementation only, not visible in ADF).

The parameters that describe an immediate unit are:

Immediate Unit parameters

LI-1 Number of immediate registers.

LI-2 Bit width of the Immediate Unit.

LI-3 Extension mode (sign or zero).

LI-4 Binding between sockets and Immediate Unit ports.

LI-5 Latency.

LI-6 Instruction templates that encode long immediates.

LI-7 Minimum bit width of the instruction fields that encode (part of) a
long immediate.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 21/57

9.2.Remarks

Inline Immediates:

II-1: For each bus inline immediate support is specified independenly. It is not
required that every bus support inline immediates.

II-3: The immediate value is extended to the bit width of the data bus in which it is
encoded.

Long Immediates:

LI-1: Immediate Units are register files dedicated for holding immediate values that
can be written only by instruction templates.

LI-2: The bit width of the Immediate Unit registers is equal for all registers of a unit.

LI-3: If the number of bits of a long immediate encoded in the instruction fields is
smaller than the bit width of the Immediate Unit register, extension takes place. The
extension mode must be specified for every Immediate Unit.

LI-5: On certain implementations, long immediates may have to be encoded in
instructions that precede the instruction containing the earliest move that reads the
long immediate. For potentially higher performance, it is possible to encode long
immediates in the same instruction that contains the earliest move that reads the long
immediate. This possibility (latency zero) is termed immediate bypassing. This
parameter is not supported in TCE v1.0. The latency is always fixed to 1. Thus, the
next instruction after the instruction that defines the long immediate is the earliest one
that can read the new value.

LI-6: An instruction template specifies how immediate bits are encoded in an
instruction (which fields of it contain the bits) and the destination IU register. A
template can write to several immediate registers, as long as each register belongs to a
different IU. A template cannot write multiple registers of the same destination IU at
the same time. All immediate registers that are not defined by a template retain their
value. There can be several instruction templates.

Stateless long immediate support: Under certain conditions, long immediates are not
part of the machine state, and do not have to be really stored in an Instruction Unit.
The conditions for this to happen are: (1) each IU has one register only; (2) every
instruction template writes every IU.

Empty instruction templates: The empty instruction template represents the encoding
format of instructions that don’t contain long immediate bits or any immediate
register-write action. The empty template is declared explicitly, as a template
declaration without instruction field declarations. If there are no IU’s, then the empty
template is the only possible template, and is implied.

LI-7: The number of bits that define (part of) a long immediate is defined explicitly
for each instruction field that is used by a template, and is independent from the
number of bits that the same instruction field has to encode transports on the bus. This
prevents a subtle dependency between the instruction encoding and the target
architecture.

9.3.Constraints

1. At least one bus must support inline immediates.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 22/57

2. Every Immediate Unit must specify at least one instruction template.

3. Each port is connected to one socket; the socket must be an output socket.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 23/57

10. Address Space

An address space defines a range of legal addresses that can be accessed by memory-
accessing operations. Each address space is totally independent from the other address
spaces. An address space consists of one or more memory banks. Memory banks can
be single-ported or multi-ported.

Typically, the memory system of an embedded processor has two or three address
spaces, one for the instruction memory and one or more for data memory.

The architecture specification does not define how concurrent accesses to a memory
address space are implemented (whether by multi-banking, by multi-porting or by a
combination of both). The maximum number of concurrent accesses to a memory
address space is implied by the number of Function Units that access that memory.3

10.1.Parameters

Address Space parameters

AS-1 Bit width of the minimum addressable word.

AS-2 Legal range of addresses (minimum and maximum address).

10.2.Remarks

AS-1: Undefined minimum addressable word is allowed.

Memory banks. The banking of the memory is transparent to the architecture and is
outside the scope of this specification. However, knowing the number of memory
banks and their mapping to the address space can be useful to balance the accesses
across the memory banks and achieve performance gains.

10.3.Constraints

If the bit width of the minimum addressable word is undefined, then only the Global
Control unit (see Section 11, GC-7) can refer to that Address Space.

3 Although it does not belong to the architecture definition, information such as the number of memory
banks that form a memory address space and the address interleaving scheme can be very useful to help
balance the accesses across the memory banks and achieve performance gains.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 24/57

11. Global Control

Unlike the other processor components, the Global Control Unit has only one
instantiation.

11.1.Parameters

Global Control parameters

GC-1 Supported control flow operations.

GC-2 Input and output ports (operands and results of operations).

GC-3 Special port for the return address.

GC-4 Bit width of input and output ports.

GC-5 Binding between sockets and ports.

GC-6 Latency of the transport pipeline.

GC-7 Memory address space accessed by the fetch unit.

GC-8 Latency of guard expression term evaluation.

GC-1: The processor may support jumps and call to subroutines with three different
addressing modes: page-relative, PC-relative, absolute. A special kind of operation,
trap, is used to raise software exceptions.

GC-3: The RA register can be read and written though the RA port.

GC-4: For each port the bit width is specified independently.

GC-5: For each port the connected socket is independently specified. Several ports
(even belonging to different units) can share the same socket. Thus, sockets are not
necessarily tied to a single port.

GC-6: The latency of the transport pipeline affects the latency of all operations that
change the program flow.

GC-7: The memory bank(s) that contains the program. May be a dedicated instruction
memory or may be shared with data.

GC-8: The number of cycles it takes to evaluate a guard expression from the given
source (GPR or FU output port). This latency is independent on the number of cycles
it takes to bring the output from a given unit (RF or FU) to the guard evaluation logic
block.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 25/57

12. Future Enhancements

The following requirements are identified, but have not addressed in this version of
the ADF specification.

12.1.Hierarchical TTA

A single “master” TTA controls several “sub-TTAs” that are treated like coprocessors.
The master may have to just provide the starting address of the data to be loaded by
the sub-TTA, and initiate execution. The sub-TTA will then start running
independently. The program in a sub-TTA might be pre-loaded.

What is the architectural support required for a hierarchy of TTAs?

Architecture Definition File Format for a New TTA Design Framework V1.9.0 26/57

Part 2: XML Specification

This part provides a complete normative description of the ADF format in XML.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 27/57

13. Format Conventions

13.1.Aliases

Aliases are not allowed in the ADF format.

The motivation for not allowing aliases is that (1) aliases are ad hoc in nature and
represent exceptions to default syntax, making the format more difficult to remember
and more complex to parse; (2) an alias introduces an alternative way to specify the
same piece of information contained in a standard declaration; (3) the exact
information conveyed by an alias depends on the other ADF declarations.

13.2.References

All ADF elements that can be referenced by other elements are referenced by name
and must be uniquely and explicitly identified by a “name” attribute. Implicit
identification of elements (based on their declaration order, for example) is not
allowed.

The main motivation for not allowing implicit identifiers is that it would complicate
maintenance. For example, a change in the declaration order of an element list would
require updating all references to the elements whose position in the list has changed.

13.3.Empty elements

Elements with default contents or empty contents are not optional. Allowing optional
elements in these cases is rejected because it weakens the validation of ADF contents.

However, since the ADF format supports incomplete architecture definitions, certain
types of elements can be omitted (mostly, elements for which multiple instances are
permitted). Thus, missing elements, when permitted, simply mean missing data and
incomplete definition, never a default value.

13.4.Naming convention for XML tags

The following rules and guidelines are applied for defining tag names of XML
elements and attributes.

1. All tag names are in lower case.

2. In names made of multiple words, single words are separated by a hyphen.

3. Local tag names do not refer to the enclosing scope and should be kept to a
minimum size.

4. A local tag name is informative and unambiguous within its local scope, but not
necessarily unique across the entire ADF.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 28/57

14. Validation

The XML description of an ADF undergoes three levels of verification.

1. Basic syntactical verification (well-formedness, in XML parlance).

2. Validity verification of the XML document within the XML processor.

3. Validity verification of the XML document that depends on external data
bases, necessarily within client applications.

4. Validity verification of the object model, within the client applications.

Well-formedness is common to all XML documents and is not discussed here. For
information, the reader is referred to: W3C, “Extensible Markup Language (XML) 1.0
(Second Edition)”, http://www.w3.org/TR/2000/REC-xml-20001006.

The validity verification of the XML document is restricted to those constraints that
must be valid even on an incomplete ADF. Thus, an ADF may be a valid XML
document, and yet represent a target processor that cannot be synthesised or cannot
run any program.

A special group of validity constraints cannot be included in ADF because they
require additional information that is stored in external files. Such constraints are
termed “external constraints” and are listed below the XML constraints.

The validity verification of the processor object model takes place in the client
application and takes into account high-level constraints on the template architecture
that cannot be validated until the ADF is complete. In other words, the verification of
the object model comprises all those constraints that is convenient to relax while the
ADF specification of a target processor architecture is incomplete, to allow saving
and reloading ADF’s of half-designed processor configurations by a client application.

Generic examples of this type of constraints are:

 Minimum number of elements in a variable-sized list of elements.

 Complex reference constraints (like unique chaining of bus segments).

The validity constraints that apply to the object model may be implemented in the
object model itself or in the clients of the object model. These constraints are out of
the scope of this document; their precise extent and nature depends on the client
applications and is not uniquely defined. Certain clients may enforce stricter
constraints simply because they do not support some of the “degrees of freedom”
allowed in the templated architecture described by ADF.

There are several levels of “validity strictness” in the verification of the object model.
For example, it does not make sense to allow a target architecture configuration with
unconnected resources (e.g., a bus with no socket connections), but a valid target
processor for such architecture could be synthesised. A processor architecture without
a fundamental operation such as ‘add’ or ‘jump’, however, is not a valid architecture
for a target processor.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 29/57

http://www.w3.org/TR/2000/REC-xml-20001006

15. General Constraints

The following constraints and definitions apply to elements or attributes of more than
one declaration block.

15.1.Unique Name Attribute

Certain elements are identified by a mandatory name attribute termed Unique Name
Attribute. The value of such name attribute can be used as a reference to the element
from other elements within the same enclosing scope.

The Unique Name Attribute has the following properties.

1. The value of the attribute is a string that matches the following regular expression:
[a-zA-Z][0-9a-zA-Z_:]*

2. Unless otherwise stated, the value of the attribute of an element must be unique
for all elements of the same type within the scope of the enclosing element.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 30/57

16. ADF Declaration

An ADF file is an XML file. Its root element is called “adf”.

The ADF file is combined, either by external reference or using an inline block, with
an optional description of the binary encoding map that must be used to generate
machine code (instruction bit vectors) for the target architecture.
<adf . . . > . . . </adf>

The adf element can contain only the following elements: bus, socket, function-unit,
register-file, immediate-unit, bridge, address-space, and global-control-unit. All these
top-level elements are optionals and can appear multiple times, except global-control-
unit, which can appear at most once.

The top-level elements are described in the following sections.

Version Information

Version information is stored in the form of attributes of the top-level declaration
element:
<adf version=”1.1” requiredversion=”1.0”>
. . .
</adf>

The version attribute is mandatory, while the required-version attribute is optional. If
it is not specified, then its default value equals version value.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 31/57

17. Top-Level Declaration

The little-endian option declaration has the following format:

<littleendian/>

This element is optional, and its existence determines the endianess of the
architecture. ADFs with this element are little-endian, while ADFs without this
element are big-endian.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 32/57

18. Transport Bus Declaration

A transport bus declaration has the following format:
<bus name=”string”>
 <width> number </width>
 <guard> . . . </guard>
 . . .
 <segment name=”name”>
 <writesto> segment </writesto>
 </segment>
 . . .
 <shortimmediate>
 <extension> string </extension>
 <width> number </width>
 </shortimmediate>
</bus>

The bus Unique Name Attribute identifies the bus in the rest of the ADF. Names of
immediate slots and names of transport bus slots share the same name space.

Note that the sockets connected to the bus are not specified in this declaration.
Connections are specified in the socket declaration (Section 20).

A transport bus declaration contains four types of elements:

1. The element width gives the maximum bit width of the data transported.

2. A guard element specifies a guard expression supported on the transport bus
for predicated data transports. A bus declaration may contain multiple guard
elements. The guard element is described in Section 19.

3. A segment element specifies a bus segment. A bus declaration may contain
multiple segment elements. The segment Unique Name Attribute identifies the
segment within its bus. Combined with the Unique Name Attribute of its bus,
it identifies the segment in the rest of the ADF. The segment element contains
one mandatory element writes-to, which gives the segment that is driven by
this segment.

4. The element short-immediate defines how inline immediates are supported by
the bus and contains two mandatory elements: extension and width.

a. The extension element gives the extension mode applied to the inline
immediate word when it is less wide than the bus that transports it. The
extension is an enumeration type consisting of two strings: “sign” and
“zero”.

b. The element width gives the number of bits of inline immediates that
are encoded in the source field of the instruction slot.

XML validity constraints:

1. A bus element can contain only the following elements: width, guard, segment,
short-immediate.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 33/57

2. Elements width and short-immediate must appear once and once only.

3. Element segment is optional and may appear multiple times.

4. The element width must be a positive integer number.

5. The value of the name attribute of segment element must be unique among all
segment declarations of a transport bus.

6. One and only one segment:writes-to element must be empty.

7. If not empty, the only valid contents of a segment:writes-to element are a string
that represents the name of a segment declared in the same bus.

8. A segment can be referred to in no more than one writes-to element of another
segment element.

9. Both elements extension and width must appear once and once only inside the
short-immediate element.

10. The element short-immediate:width must be an integer number between zero and
the width of the bus (inclusive).

11. The only valid contents of the short-immediate:extension element are the strings
“sign” and “zero”. Any other string is not valid.

12. At most one guard element can contain element unconditional (see Section 19).

Architecture Definition File Format for a New TTA Design Framework V1.9.0 34/57

19. Guard Support Declaration

Each guard support declaration is enclosed in a guard element:
<guard>
 . . .
</guard>

and specifies a unique guard expression for a transport bus.

Explicit unconditional execution is represented with two special guard expression
elements. The guard support declaration in this case contains either of the following
elements:
 <alwaystrue/>
 <alwaysfalse/>

The expression in the guard support declaration consists of one or two terms. A one-
term guard expression can be of two types: simple-expr or inverted-expr. Also a two-
term expression can be of two types: and-expr and or-expr. This results in the
following four elements inside the guard declaration block:
 <simpleexpr> . . . </simpleexpr>
 <invertedexpr> . . . </invertedexpr>
 <andexpr> . . . </andexpr>
 <orexpr> . . . </orexpr>

The terms for conditional execution can be of two types: bool and unit. The bool
element contains a reference to a register that belongs to a register file. The contents
of the referenced register are used to compute the conditional value of the guard
expression. A register reference consists of two parts: the register file name and the
index of the register within the register file:
<bool>
 <name> regfile </name>
 <index> index </index>
</bool >

The unit element contains a reference to the output port of an FU. The value read
from the referenced port is used to compute the conditional value of the guard
expression. A port reference consists of two parts: the FU name and port name:
<unit>
 <name> unit </name>
 <port> port </port>
</unit>

A two-term guard expression (and-expr or or-exp) combines two one-term guard
expressions with a logical operator. Each one-term guard expression can be either a
simple-expr or an inverted-expr. For example:
<guard>
 <andexpr>
 <simpleexpr>
 <bool>

Architecture Definition File Format for a New TTA Design Framework V1.9.0 35/57

 <name> rf_bool </name>
 <index> 0 </index>
 </bool>
 </simpleexpr>
 <invertedexpr>
 <unit>
 <name> fu_cmp </name>
 <port> res </port>
 </unit>
 </invertedexpr>
 </andexpr>
</guard>

XML validity constraints:

1. A guard element must contain one and only one element in the following set:
always-true, always-false, simple-expr, inverted-expr, and-expr, or-expr.

2. Elements simple-expr and inverted-expr must contain one term.

3. Elements and-expr and or-expr must contain two terms. These terms can be any
combination of simple-expr and inverted-expr.

4. The conditional execution elements simple-expr and inverted-expr must contain
exactly one element in the following set: bool, unit.

5. A bool element must contain two elements: name and index.

a. The name element must be the valid name of a declared RF.

b. The index element must be a nonnegative integer number, and must be a
valid register index in the RF, that is, smaller than the RF size.

6. A unit element must contain two elements: name and port.

a. The name element must be the valid name of a declared FU.

b. The port element must represent the valid name of a port declared within
the Function Unit referenced by name element.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 36/57

20. Socket Declaration

A socket declaration has one of the following formats:
<socket name=”string”>
 <readsfrom> . . . </readsfrom>
 . . .
</socket>

<socket name=”string”>
 <writesto> . . . </writesto>
 . . .
</socket>

The socket Unique Name Attribute identifies the socket in the rest of the ADF.

A socket declaration contains either reads-from or writes-to elements. An element
reads-from specifies the bus (segment) that this socket reads from. An element writes-
to specifies the bus (segment) that this socket writes to.

Both reads-from and writes-to elements have the following format:
 <bus> bus </bus>
 <segment> segment </segment>

The bus element contains a reference to the bus read or written by this socket. The
segment element contains a reference to the bus segment read or written by this
socket.

Definition. A socket is a binding socket with respect to two bus chains if it refers to
one bus on each chain.

XML validity constraints:

1. A socket element can contain only elements writes-to or reads-from.

2. Elements writes-to and reads-from are optional and mutually exclusive.

3. Elements writes-to and reads-from may appear multiple times.

4. Elements writes-to and reads-from must contain one and only one element bus,
and one and only one element segment.

5. The only valid contents of elements writes-to:bus and reads-from:bus are the
strings that represent valid names of declared buses.

6. The only valid contents of elements of writes-to:segment and reads-from:segment
are the strings that represent valid names of segments of the bus specified by the
corresponding bus element.

7. A combination of bus and segment names may not appear in more than one
writes-to or reads-from element of a socket declaration.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 37/57

21. Bridge Declaration

A bridge declaration has the following format:
<bridge name=”string”>
 <readsfrom> bus </readsfrom>
 <writesto> bus </writesto>
</bridge>

The bridge Unique Name Attribute identifies the bridge in the rest of the ADF.

A bridge declaration contains two elements:

1. The element read-from contains a reference to a bus and specifies that the
bridge reads from the given bus.

2. The element writes-to contains a reference to a bus and specifies that the
bridge writes onto the given bus.

XML validity constraints:

1. A bridge element contains only elements writes-to and reads-from.

2. Elements reads-from and writes-to must appear once and once only.

3. The only valid contents of the writes-to and reads-from elements are the strings
that represent valid names of declared buses.

4. The same bus name may not appear in the writes-to and in the reads-from
element.

5. At most two bridge elements may refer to the same bus in their writes-to
elements.

6. At most two bridge elements may refer to the same bus in their reads-from
elements.

7. Taking all bridge elements together, the busses referred to in their writes-to and
reads-from elements must form a unique, acyclic chain of busses.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 38/57

22. Function Unit Declaration

A Function Unit declaration has the following format:
<functionunit name=”string”>
 <port name=”string”>
 <connectsto> socket </connectsto>
 . . .
 <width> number </width>
 <triggers/>
 <setsopcode/>
 </port>
 . . .
 <operation> . . . </operation>
 . . .
 <addressspace> name </addressspace>
</functionunit>

The function-unit Unique Name Attribute identifies the Function Unit being declared
in the rest of the ADF.

A Function Unit declaration contains four element types:

1. The element port declares a port used to interface the Function Unit with the
rest of the processor. The port Unique Name Attribute identifies the port
within the FU. A port declaration consists of the following elements:

a. One or two connects-to elements. Each element contains a reference to
a socket, and specifies that the FU port reads from (or writes to) one or
more transport buses through the given socket. Input ports are
connected to a socket that reads from a bus. Output ports are connected
to a socket that writes to a bus. Bidirectional ports are connected to two
sockets, one writing onto and one reading from a bus.

b. The element width defines the bit width of the port. The bit width must
be a positive integer number.

c. An optional, valueless element triggers. If present, it specifies that
reading (or writing) this port starts the execution of a new operation.

d. An optional, valueless element sets-opcode. If present, it specifies that
reading (or writing) this port selects the operation to be executed.

2. The operation element declares the implementation of an operation of the
architecture’s instruction set. The operation element is described in Section
23.

3. The address-space element declares the address space that can be accessed by
the FU. The address-space element is described in Section 26.

XML validity constraints:

1. A function-unit element can contain only the following types of element: port,
operation, address-space.

2. Element address-space must appear once and once only.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 39/57

3. Elements port and operation are optional and may appear multiple times.

4. The only valid contents of port:connects-to elements are strings that represent
valid names of declared sockets.

5. The element port:width is mandatory, and must appear only once.

6. The value of the port:width element must be a positive integer number.

7. The element port:connects-to is optional, and may appear once or twice within
each port element. If it appears twice, the sockets referred to must not have the
same direction.

8. The element port:sets-opcode must appear in at most one port.

9. A port element that contains the sets-opcode element must also contain the
triggers element.

10. The only valid contents of a nonempty address-space element are strings that
represent valid names of declared address spaces. An empty address-space
indicates that the Function Unit does not access a memory bank.

External validity constraints:

1. The width element of the address-space declaration (see Section 26) referred to by
the address-space element must not be empty.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 40/57

23. Hardware Operation Declaration

A Hardware Operation declaration block is local to a Function Unit declaration and
has the following format.
<operation>
 <name> operation </name>
 <bind name=”number”> port </bind>
 . . .
 <pipeline> . . . </pipeline>
</operation>

A Hardware Operation declaration contains the following elements:

1. The mandatory name element identifies the operation being declared with a
string of characters.

2. A variable number of bind elements. Each element binds one of the inputs or
outputs of the base operation with one of the ports of the Function Unit that
contains the Hardware Operation. A bind element contains a mandatory name
attribute. The value of the name attribute is a number, and identifies one of the
inputs/outputs of the base operation. The value of the name attribute must be
unique among all bind elements within the operation element scope.

3. The element pipeline declares the execution pipeline of the operation. The
pipeline element is described in Section 24.

XML validity constraints:

1. An operation element can contain only the following types of element: name,
bind, pipeline.

2. Elements name and pipeline must appear once and once only.

3. The value of the name element must be unique among all operation elements of a
Function Unit declaration.

4. The only valid contents of the bind elements are the strings that represent valid
names of ports declared in the containing function-unit element.

5. It is not allowed for two bind elements to specify the same port.

6. The bind:name attribute must be a positive numer and must be unique among all
the bind elements of an operation declaration.

External validity constraints:

1. The value of the name element must be a string of characters that matches one of
the operation names allowed for the target architecture.

2. The value of the name element is a string that matches the following regular
expression: [a-z_][0-9a-z_]*

3. There must be one bind element for each of the operation inputs.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 41/57

24. Execution Pipeline Declaration

An execution pipeline declaration block is local to a Hardware Operation declaration
and has the following format:
<pipeline>
 <resource name=”string”>
 <startcycle> number </startcycle>
 <cycles> number </cycles>
 </resource>
 . . .

 <reads name=”number”>
 <startcycle> number </startcycle>
 <cycles> number </cycles>
 </reads>
 . . .

 <writes name=”number”>
 <startcycle> number </startcycle>
 <cycles> number </cycles>
 </writes>
 . . .

</pipeline>

An execution pipeline declaration contains resource, reads, and writes elements. All
elements are optional.

A resource is a part of a pipeline that is used when executing the operation. The
pipeline declaration shows the occupation for each resource cycle by cycle. Resources
are identified by the value (a character string) of the mandatory attribute name. The
scope of a resource is the Function Unit declaration. Thus, two resource elements
having the same name value refer to the same processor resource, whether the element
appears in the same pipeline element or in different pipeline elements of operation
declarations in the same Function Unit. Resource usage elements do not have to be
declared before being referenced. The order of the resource elements is not important.

Elements reads (writes) indicate the inputs (outputs) of the operation that are accessed
and thus, indirectly though the bind declaration of section 23, which ports of the FU
are read or written. By specifying writes elements in different cycles, it is possible to
define independent latencies between the triggering operand and each operation
output. Elements reads and writes are identified by a value (a number) of the
mandatory attribute name. This number identifies one of the operation inputs
(outputs), therefore the scope of these elements is the operation declaration.

All three types of elements contain the following elements:

1. The mandatory start-cycle element gives the first cycle in which this resource
is used relative to the beginning of the operation. The start cycle must be a
nonnegative integer number. Cycle ‘0’ is the cycle in which the operation is
triggered, that is, the operand bound to the triggering port is written.

2. The mandatory cycles element indicates the number of cycles this resource is
occupied.

The following example shows the pipeline of a floating-point divide operation with a
2-cycle unpipelined unpack, a 2-cycle pipelined pack phase and a 10-cycle

Architecture Definition File Format for a New TTA Design Framework V1.9.0 42/57

unpipelined computation phase, a cycle which is overlapping with the unpack phase.
<pipeline>
 <resource name=”s1”>
 <startcycle> 1 </startcycle>
 <cycles> 2 </cycles>
 </resource>

 <reads name=”1”>
 <startcycle> 1 </startcycle>
 <cycles> 2 </cycles>
 </reads>

 <reads name=”2”>
 <startcycle> 1 </startcycle>
 <cycles> 2 </cycles>
 </reads>

 <resource name=”s2”>
 <startcycle> 2 </startcycle>
 <cycles> 10 </cycles>
 </resource>

 <resource name=”s3”>
 <startcycle> 12 </startcycle>
 <cycles> 1 </cycles>
 </resource>

 <resource name=”s4”>
 <startcycle> 13 </startcycle>
 <cycles> 1 </cycles>
 </resource>

 <writes>
 <startcycle> 13 </startcycle>
 <cycles> 1 </cycles>
 </writes>
</pipeline>

Some operations can be completed by the end of the same cycle in which the
operation is triggered. In such zero-latency operations, the results are available in the
next cycle, and accesses to inputs and outputs are concentrated in cycle zero of the
pipeline declaration.

The following example shows the pipeline of a zero-latency operation with two input
operands and one output (for example, a bitwise OR).
<pipeline>
 <resource name=”s1”>
 <startcycle> 0 </startcycle>
 <cycles> 1 </cycles>
 </resource>

 <reads name=”1”>
 <startcycle> 0 </startcycle>
 <cycles> 1 </cycles>
 </reads>

 <reads name=”2”>
 <startcycle> 0 </startcycle>
 <cycles> 1 </cycles>

Architecture Definition File Format for a New TTA Design Framework V1.9.0 43/57

 </reads>

 <writes name=”3”>
 <startcycle> 0 </startcycle>
 <cycles> 1 </cycles>
 </writes>
</pipeline>

XML validity constraints

1. The only valid value for the name attribute of reads and writes elements is a string
that represents a positive integer.

2. Element start-cycle must contain a nonnegative integer.

3. At least one of the resource or reads elements must have the start-cycle element
containing “1” or “0”.

4. Element cycles a positive integer.

5. Nonoverlapping uses of the same resource. Two resource elements may not
have the same name attribute if start-cycle element of the later usage contains a
number that is smaller than the sum of values in start-cycle and cycles elements of
the other resource element.

6. Canonicity: Two resource elements may not have the same name attribute if
start-cycle element of the later usage contains a number that is equal to the sum of
values in start-cycle and cycles elements of the other resource element.

External validity constraints:

1. There must be at least one reads element for each of the operation inputs.

2. There must be at least one writes element for each operation output bound to a
port.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 44/57

25. Register File Declaration

A register file declaration has the following format.
<registerfile name = ”string”>
 <type> . . . </type>
 <size> number </size>
 <width> number </width>
 <maxreads> number </maxreads>
 <maxwrites> number </maxwrites>

 <guardlatency> number </guardlatency>
 <port name=”string”>
 <connectsto> socket </connectsto>
 . . .
 </port>
 . . .
</registerfile>

The register-file Unique Name Attribute identifies the register file being declared in
the rest of the ADF.

A register file declaration contains the following elements:

1. The type element indicates how the RF is used. A RF can be used for general
register allocation (normal), for custom, user-controlled register allocation
(reserved) or for user-controlled I/O communication (volatile). Only 'normal'
type is supported by TCE v1.0.

2. The size element gives the number of registers contained in the register file
and must be a positive integer number.

3. The width element gives the bit width of the registers and must be a positive
integer number.

4. The element max-reads gives the maximum number or ports that can read a
registers all in the same cycle.

5. The elements max-writes gives the maximum number of ports that can write
registers all in the same cycle.

6. The guard-latency element declares the local latency of guard terms evaluated
out of the registers of this register file.

7. The element port declares a port used to interface the register file with the rest
of the processor. The port Unique Name Attribute identifies the port within its
register file. A port element contains up to two connects-to elements.
A connects-to element contains a reference to a socket and specifies that the
register file port reads from (or writes to) one or more transport buses through
the given socket. A port connected to a socket that reads from a bus is an input
port. A port connected to a socket that writes to a bus is an output port. A port
connected to two sockets, one writing onto and one reading from a bus, is a
bidirectional port.

XML validity constraints:

1. A register-file element can contain only elements of the following types: type,

Architecture Definition File Format for a New TTA Design Framework V1.9.0 45/57

size, width, max-reads, max-writes, port.

2. Elements type, size, width, max-reads, max-writes, max-rw must appear once and
once only.

3. Element port is optional and may appear multiple times.

4. The only valid contents of the type element are the strings “normal”, “reserved”,
and “volatile”.

5. Elements size and width must contain a positive integer number.

6. The max-reads element must contain a nonnegative integer number.

7. The max-writes element must contain a nonnegative integer number.

8. A nonempty guard-latency element must contain an integer 0 or 1. An empty
guard-latency element indicates that the latency of the guard terms from this
Register File is zero, or that there are no guard terms that read a register of this
Register File.

9. The only valid contents of port:connects-to elements are strings that represent
valid names of declared sockets.

10. Each port:connects-to element must be unique within the entire RF.

11. The element port:connects-to is optional; it may appear once or twice within each
port element. If it appears twice, the sockets referred to must not have the same
direction.

12. The count of architectural ports connected to the register file must not exceed the
max-reads and max-writes properties of the register file. That is, there can be a
maximum of max-reads read ports and max-writes write ports in the register file.
The max-reads and max-writes properties are to store the architectural information
in “deattached register files” in certain databases in which ports do not provide
direction information.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 46/57

26. Address Space Declaration

An address space declaration has the following format.
<addressspace name=”string”>
 <width> number </width>
 <minaddress> number </minaddress>
 <maxaddress> number </maxaddress>
</addressspace>

The address-space Unique Name Attribute identifies the address space being declared
in the rest of the ADF.

The address space declaration contains the following mandatory elements:

1. The width element specifies the bit width of the minimum addressable word
(equal to the memory bank bit width). An empty element specifies an
undefined bit width.

2. The min-address element specifies the lowest address in this address space.

3. The max-address element specifies the highest address in this address space.

XML validity constraints

1. An address-space element can contain only elements of the following types:
width, min-address, max-address.

2. All elements must appear once and once only.

3. If not empty, the width element must contain a positive integer number.

4. Both min-address and max-address elements must contain a nonnegative integer
number.

5. The value of min-address must be lower than the value of max-address.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 47/57

27. Global Control Unit

The Global Control Unit declaration has the following format.
<globalcontrolunit name=”string”>
 <port name=”string”>
 <connectsto> socket </connectsto>
 <width> number </width>
 <triggers/>
 <setsopcode/>
 </port>
 . . .
 <specialport name=”string”>
 <connectsto> socket </connectsto>
 . . .
 <width> number </width>
 </specialport>
 . . .
 <returnaddress> port </returnaddress>
 <ctrloperation>
 <name> string </name>
 <bind name=”number”> port </bind>
 . . .
 <pipeline> . . . </pipeline>
 </ctrloperation>
 . . .
 <addressspace> name </addressspace>
 <delayslots> number </delayslots>
 <guardlatency> number </guardlatency>
</globalcontrolunit>

The global-control-unit Unique Name Attribute identifies the Global Control Unit in
the rest of the ADF and must be unique in the Function Unit name space.

The Global Control Unit declaration contains elements of the following types:

1. A port element declares a port used to interface the Global Control Unit with
the rest of the processor. The element port has exactly the same format of
element port described in Section 22.

2. A special-port element declares a port used to interface a special-purpose
register of the Global Control Unit with the rest of the processor. The special-
port Unique Name Attribute identifies the port within the FU. A special-port
element consists of the following elements:

a. One or two connects-to elements. Each element contains a reference to
a socket, and specifies that the FU port reads from (or writes to) one or
more transport buses through the given socket. Input ports are
connected to a socket that reads from a bus. Output ports are connected
to a socket that writes to a bus. Bidirectional ports are connected to two
sockets, one writing onto and one reading from a bus.

b. The element width defines the bit width of the port. The bit width must
be a positive integer number.

3. The return-address element declares which special port is connected to the

Architecture Definition File Format for a New TTA Design Framework V1.9.0 48/57

return address register.

4. The ctrl-operation element specifies which control transfer operations (e.g.
jump, call, trap) are supported. These operations are identified with a unique
name. The specification of operation element described in Sections 23, 24
apply, unchanged, to ctrl-operation element.

5. The mandatory address-space element declares the address space where the
program is stored.

6. The mandatory delay-slots element declares the number of instructions
executed following a conrol flow instruction (e.g., JUMP). The count depends
on control unit implementation details such as count of stages of the transport
pipeline.

7. The mandatory guard-latency element declares the global latency of guard
expression evaluation.

XML validity constraints

1. Element global-control-unit can appear at most once.

2. The global-control-unit element can contain only elements of the following types:
port, special-port, return-address, ctrl-operation, address-space, delay-slots,
guard-latency.

3. Elements address-space, return-address, delay-slots and guard-latency must
appear once and once only.

4. Elements port, special-port and ctrl-operation are optional and may appear
multiple times.

5. The attribute name of a port and special-port element must be a unique string
among all port and special-port elements in the Global Control Unit declaration.

6. The only valid contents of connects-to elements within elements port and special-
port are strings that represent valid names of declared sockets.

7. The width element of port and special-port elements is mandatory, and must
appear only once.

8. The width element of port and special-port elements must contain a positive
integer number.

9. The element connects-to in port and special-port elements is optional, and may
appear once or twice within each element. If it appears twice, the sockets referred
to must not have the same direction.

10. The element port:sets-opcode must appear in at most one port.

11. If a port element contains the sets-opcode element, it must contain the triggers
element, too.

12. The only valid contents of nonempty return-address element is a string that
represents a valid name of a special-port contained in the Global Control Unit
declaration.

13. The only valid contents of nonempty address-space element is a string that
represents a valid name of a declared address space.

14. The value of the delay-slots element must be an integer number greater or equal to

Architecture Definition File Format for a New TTA Design Framework V1.9.0 49/57

zero.

15. The value of the guard-latency element must be a nonnegative integer number. If
there is a guard term that reads a register of a Register File which has local guard
latency of zero, the guard-latency element must be a positive integer number.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 50/57

28. Immediate Unit Declaration

Immediate Unit Declaration has the following format.
 <immediateunit name=”string”>

 <extension> extension </extension>
 . . .
 <template name = ”string”>
 <slot>
 <name> slotname </name>
 <width> number </width>
 </slot>
 . . .
 </template>

 . . . (any register file element) . . .
 </immediateunit>

The immediate-unit Unique Name Attribute identifies the immediate unit being
declared in the rest of the ADF. An immediate unit is architecturally a register file.
Thus, all properties supported by a Register File Declaration, except defining write
ports are supported also by Immediate Unit Declarations.

Additionally, long immediate declaration contains the following elements:

1. The extension element gives the extension mode applied to the long immediate
when it is encoded in a number of bits smaller than the bit width of the
destination immediate register and written to a register in the immediate unit.
The extension is an enumeration type consisting of two strings: “sign” and
“zero”.

2. The element template declares (part of) an instruction template that writes to
an IU register. A template element is identified by its mandatory name
throughout the ADF. If an instruction template writes into several IU’s, the
template definition is “distributed” across the destination IU’s. Parts of the
same instruction template are specified in separate template elements with the
same name, one in each destination IU. Any register of a destination IU can be
written: the register choice orthogonal with respect to the template and the
destination IU. A template element may contain slot elements.

a. A slot member specifies an instruction field in which (part of) a long
immediate is stored. The bits of the long immediate defined by a
template declaration are concatenated from different slots in the same
order in which slots are declared. A slot element contains one name
element and one width element.

i. The name element identifies the instruction field (transport bus
slot, described in Section 18 or immediate dedicated slot,
described in Section 29) in which (part of) the long immediate
is stored.

ii. The width element gives the minimum bit width of the
instruction field as well as the number of significant bits of the
long immediate that are encoded in the instruction field.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 51/57

XML validity constraints

1. In addition to any element supported by a register-file declaration, an immediate-
unit element can contain only elements of the following types: extension,
template.

2. The only valid contents of extension element are the strings “sign” and “zero”.
Any other string is not valid.

3. The value of the name attribute of template element must be unique among all
template declarations of an immediate unit.

4. The only valid contents of slot:name elements are strings that represent valid
names of declared buses or valid names of declared immediate slots.

5. A slot name may not appear in more than one slot:name element within a template
element.

6. The property max-writes derived from register-file declaration is always and by
default 1 for Immediate Unit Declarations. This is because IU is a register file that
is written by the control unit, thus needs one write port architecturally, when
considering IU as a component separate from the rest of the architecture.
However, that write port is not visible to the data path. Therefore, the validity
check of count of architectural write ports should be less than equal to the max-
writes does not hold for immediate units.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 52/57

29. Immediate Slot Declaration

An immediate slot declaration has the following format:
<immediateslot name=”string”/>

The immediate-slot Unique Name Attribute identifies the dedicated immediate slot in
the rest of the ADF. Names of immediate slots and names of transport bus slots share
the same name space.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 53/57

Appendix

Architecture Definition File Format for a New TTA Design Framework V1.9.0 54/57

Abbreviations

ADF Architecture Definition File
ADFF Architecture Definition File Format
ASP Application Specific Processors
COTS Commercial Off-The-Shelf
FU Function Unit
GPR General-Purpose Register
IU Immediate Unit
MDF Machine Definition File
MDFF Machine Definition File Format
PC Program Counter
RF Register File
TNO Netherlands Organisation for Applied Scientific Research
TNO-FEL TNO Physics and Electronics Laboratory
TTA Transport Triggered Architecture
TUNI Tampere University
XML eXtensible Markup Language

Architecture Definition File Format for a New TTA Design Framework V1.9.0 55/57

Glossary
Bridge Storage element that allows to pipeline a data transport between

two transport busses.
Bus segment Smallest independently programmable unit of a transport bus

that can carry out a data transport.
Function Unit Processor block that can carry out operations of the TTA.
Immediate Link-time constant bit pattern stored in the instruction stream.
Immediate Unit Processor block that stores immediates.
Instruction
template

Encoding format of a TTA instruction in a given processor
implementation.

Move Atomic unit of a TTA instruction that specifies a data transport.
Also, the data transport itself.

Register File Processor block containing a set of registers for temporary
storage of data.

Transport bus Programmable bus of a TTA processor that can carry out data
transports.

Unit One of: Register file, Function Unit, Immediate Unit or Global
Control Unit.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 56/57

Dependencies Between ADF Elements
The following diagram shows the cross-references existing between the top-level
elements of ADF. The tail of the arrow is attached to the (sub)element that contains
the reference, the head is attached to the referenced (sub)element. Thicker links
without arrow depict containment, not references. For example, Guard elements are
contained by Bus elements. Internal dependencies such as those between operation
declarations and FUPort elements are not shown.

Architecture Definition File Format for a New TTA Design Framework V1.9.0 57/57

BusBridge Guard
ASpace

Socket

Port

RegisterFil
e

FUPort

FunctionUnit
GlobalContro

l

ImmedUnit

ImmedSlot

	1. Introduction
	2. Endianess
	3. Transport Buses
	3.1. Parameters
	3.2. Remarks
	3.3. Constraints

	4. Sockets
	4.1. Parameters
	4.2. Remarks

	5. Bridges
	5.1. Parameters
	5.2. Remarks
	5.3. Constraints

	6. Function Units
	6.1. Parameters
	6.2. Remarks
	6.3. Constraints

	7. Hardware Operations
	7.1. Parameters
	7.2. Remarks
	7.3. Constraints

	8. Register Files
	8.1. Parameters
	8.2. Remarks
	8.3. Constraints

	9. Immediate Support
	9.1. Parameters
	9.2. Remarks
	9.3. Constraints

	10. Address Space
	10.1. Parameters
	10.2. Remarks
	10.3. Constraints

	11. Global Control
	11.1. Parameters

	12. Future Enhancements
	12.1. Hierarchical TTA

	13. Format Conventions
	13.1. Aliases
	13.2. References
	13.3. Empty elements
	13.4. Naming convention for XML tags

	14. Validation
	15. General Constraints
	15.1. Unique Name Attribute

	16. ADF Declaration
	17. Top-Level Declaration
	18. Transport Bus Declaration
	19. Guard Support Declaration
	20. Socket Declaration
	21. Bridge Declaration
	22. Function Unit Declaration
	23. Hardware Operation Declaration
	24. Execution Pipeline Declaration
	25. Register File Declaration
	26. Address Space Declaration
	27. Global Control Unit
	28. Immediate Unit Declaration
	29. Immediate Slot Declaration

