
TTA Program Exchange Format

Program File Format for a New TTA Design
Framework

Authors: A. Cilio (Tampere University of Technology)

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 1/60

TUT

TAMPERE
UNIVERSITY OF
TECHNOLOGY

1. Summary
This document contains the complete reference specification of the TTA Program
Exchange Format (TPEF) for a new TTA design framework. TPEF allows to store in
a persisting form a TTA Program in any stage of its processing, from unscheduled
code to TTA code scheduled for a specific TTA target processor.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 2/60

Document History

Version Date Author Comment

0.1 A. Cilio First draft of the document.

0.2 13/07/03 A. Cilio Second draft, corrections from M.Lepistö and P.Jääskeläinen
proofreading

0.3 17/10/03 A. Cilio Modifications to immediate and empty instruction
specifications (TEXT section).

0.4 02/12/03 A. Cilio Added documentation of instruction element annotations.

0.5 12/02/04 A. Cilio Added program profile section. Section identifier is now 16-bit
long. Meaning of sh_size for (u)data sections changed.

0.6 27/02/04 A. Cilio No overload of sh_aspace field; sh_link extended to 16 bits.
Changed references to sections in section LINENO.

0.7 26/04/04 A. Cilio Revision after meeting at NRC, Helsinki. Added symbol table
section. Completed relocation section. Renamed TEXT section
to CODE.

0.8 05/05/04 A. Cilio Revision after M.Lepistö comments. Rejected chunk number.
Added relocation diagram. Added table for sh_info member.

0.9 10/05/04 A. Cilio Added general properties and limits. Rejected support PC-
relative relocation. Clarified page-relative relocations.

0.9.1 30/07/04 A. Cilio Revised introduction and relocation section. Corrected error in
relocation example.

0.10 05/08/04 A. Cilio Changed slightly the meaning of asp_wsize member. Added
sh_info data (instruction word size) for code section. Added
document section about sequential architecture.

0.11 09/10/04 A. Cilio Changed specification of sh_info for code section.

0.12 09/01/05 A. Cilio Complete specification of move guards. Changed FU input
port and instruction element annotations.

0.13 05/02/05 A. Cilio Redefined format of immediates. Redefined source and
destination format for GPR’s, variables and special registers.

0.14 10/02/05 A. Cilio Corrections to move format. Added program entry symbol.

0.15 21/02/05 A. Cilio Corrected guard and move type specifications. Added name to
address spaces.

0.16 19/05/05 A. Cilio Introduced MVS_BRIDGE type for move sources. Minor
updates to take bridges into account.

0.17 04/08/05 M. Lepistö Added STT_PROCEDURE symbol type.

0.18 12/10/05 A. Cilio Added MRT_PORT. Corrections to format of MVT_UNIT.

0.18.1 30/11/05 A. Cilio Disabled instruction size and encoding in TUT_TTA.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 3/60

Table of Contents
1. Summary..2

2. Introduction..6

 Part 1: Requirements...7

 Part 1: Requirements...7

 Part 1: Requirements...7

3. Requirements..8

 Part 2: Binary Format Specification..9

 Part 2: Binary Format Specification..9

 Part 2: Binary Format Specification..9

4. Format Overview..10

5. File Header...11

6. Section Header...14

7. TPEF sections...19

7.1. Section Format and Constraints...19

7.2. Undefined References to Section Elements..19

8. General Properties and Constraints..20

8.1. Range Limits...20

8.2. Bit Width of Encoded References...20

8.3. Undefined References...20

9. Null Section..21

10. Address Space Table section..22

11. Code section...24

11.1. Immediate Element..26

11.2. Move Element...27

12. Processor Resource Table section..32

13. Initialised data section..34

14. Uninitialised data section...35

15. Symbol Table section...36

15.1. Symbol entries...38

16. Relocation section..40

17. Line number section...44

18. String Table section..45

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 4/60

19. Debug section...46

20. Machine Description File section...47

21. Program Profile section..48

22. Data Encoding and Alignment Rules...49

23. Unscheduled Target TTA...50

23.1. TPEF Move Format...50

23.2. Address Spaces..51

 Appendix...52

 Appendix...52

 Appendix...52

24. Glossary..53

25. Further Ideas...54

25.1. Extensible Fields...54

25.2. Immediate Sections...54

25.3. Environment Section...54

25.4. Address Space Reference Section...54

25.5. Multicasting Support...55

25.6. Symbol Table Entry Extension..55

25.7. Relocation Section with Addend Member..55

25.8. Support for PC-Relative Relocation..56

26. Notes...57

27. Resolved Design Issues..58

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 5/60

2. Introduction
TPEF is the name of the binary file format used to define TTA programs for a given
target processor architecture. Such architecture must conform to a transport-triggered
architecture template. TPEF supports multiple TTA templates.

Part of the TPEF format specification, such as code sections and relocation
information, depends on the TTA template. This document describes also the
template-specific part of the specification that applies to the TTA Codesign
Environment architecture template.

A TPEF file describes a TTA program at different levels of abstractions: from object
code containing unresolved references to unscheduled linked code to (possibly
partially) scheduled TTA code for a specific TTA target processor. For a complete
definition of the TTA architecture template, see the specification document of the
Machine Definition Format [1]. For a description of the architecture template
conventions, see the Architecture Specification document [2].

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 6/60

Part 1: Requirements

This part of the document specifies the requirements of TPEF.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 7/60

3. Requirements

Representation of sequential and parallel TTA code. The TPEF instruction format
can represent sequential and parallel code. This requirement can be achieved adopting
a “minimal” description of the scheduled code and an idealised architecture for the
sequential code that is consistent with concrete target architectures.

Size efficiency. Variable encoding is a must to achieve size-efficient representation of
TTA code, given the discrepancy in amount of data necessary to describe empty or
“filled” TTA instructions, sequential and parallel moves.

Full support for parallel TTA code. The information contained in a TPEF file is
sufficient to unambiguously reconstruct, when combined with the appropriate target
processor architecture description of a MDF file, the precise parallel code.

Support for code relocation. Relocation requires that all references to instructions or
data, that is all constant addresses (either immediate source fields of moves or
initialisation data of variables) can be identified. A relocation table is useful for this
purpose, but might be insufficient. To simplify reference lookups, immediates should
be stored in the TPEF file in a consistent way, independent of how they are actually
encoded in the instruction stream expected by the target processor. Link and reference
resolution functionality is strictly limited to pure sequential code

Independence from external target architecture description. The information in a
TPEF file completely defines a parallel TTA program; the Machine Definition File
that describes the target architecture is optional. TPEF specification of processor
resource usage may be incomplete. The MDF can be used to complement the program
data with details otherwise left unspecified (if any).

Parallel and sequential TTA code can be mixed in the same file. This requires that
the hardware resource categories whose usage is represented in TPEF files must have
resource identifiers for sequential (unscheduled) code. These resource identifiers are
reserved to sequential code, and cannot be used to represent real hardware resources
of a target processor. This approach makes it possible to represent partially scheduled
instructions, where, for example, part of the resources required the carry out the data
transport are assigned (and specified in the TPEF file) while other resources are left
unspecified (that means, the identifiers reserved to unscheduled code are used).

Support for multiple program sections of a type. This requirement implies unique
section identifiers for each type of section.

Support for linkage and reference solving. This implies that not all references in a
TPEF file contain data, and that unresolved, external symbols must be supported.
Linkage implies also possible auxiliary data structure to organise library files.

Support for debugging information. Symbolic information is stored as symbol table
entries in STABS format. Either ad-hoc symbol table sections or the same symbol
table used for other program symbolic information can be used. Some source-level
debugging information may be difficult or even impossible to maintain in scheduled
code, because operations and moves are scattered, and original source lines are lost.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 8/60

Part 2: Binary Format Specification

This part provides the normative specification of the TPEF binary representation. The
TPEF format is extensible. New sections can be added, provided that the basic section
header information conforms to the TPEF format specifications.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 9/60

4. Format Overview

The information stored in a TPEF file is organised in section. Simply put, a section is
a collection of information items of similar type. A TPEF file consists of a file header
and a variable number of sections. Each section is accompanied by a section header,
which provides identification and file-accessing information. Some section headers
may not have a corresponding raw-data section. The following table shows the file's
organisation.

file header

section header 1

...

section header n

section 1

...

section m

Scope of the TTA Program File Format. Format specification is organised in two
levels: the common part and the architecture-specific part. The common part of this
specification describes the format of the data structures common to every TPEF file
and the base format of certain file sections. This part dictates the minimum
requirements that an implementation must satisfy in order to read/write well-formed
TPEF files. This part of the specification also describes the correct way to extend the
information contained in common data structures without losing backward
compatibility. Other file sections, notably the sections containing program
instructions and data, and the sections containing debugging information, are specific
to the target architecture and the toolset that generates the file. These sections are not
strictly part of the format specification, but represent extensions thereof. The format
described for these sections is specific for a target architecture, the new TTA Design
Framework developed at the Tampere University of Technology, and can be used as a
guideline for defining TPEF specification of other architecture templates.

Byte order. The byte order of any number stored in TPEF is big-endian, independent
of the host computing system that created the TPEF file.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 10/60

5. File Header

The file header provides a information to:

1. Unambiguously identify the file as a TPEF file

2. Locate and correctly interpret the contents of the file

Field Bytes Description

fh_id 10 File format identification mark.

fh_arch 1 Architecture (template) of the TTA code stored.

fh_type 1 The type of TTA program contained in this file.

fh_shoff 4 File offset to the first section header.

fh_size 2 Size (in bytes) of this file header (including fh_id).

fh_shsize 2 Size (in bytes) of a section header. All entries have same size.

fh_shnum 2 Number of section headers.

fh_shstrtab 4 File offset to section header of the string table that contains
section name strings.

The file format identifier fh_id contains the following bytes:

Byte Value

id_magic[0] 0x7F

id_magic[1] 0x54 'T'

id_magic[2] 0x54 'T'

id_magic[3] 0x41 'A'

id_magic[4] 0x2D '-'

id_magic[5] 0x50 'P'

id_magic[6] 0x46 'F'

id_magic[7] 0x00

id_version Version number of this file format

id_size Size of this identifier structure

The current version number contained in id_version structure is 1.

The file offset past the last byte of the fh_id structure should always be obtained by
reading id_size. In this way, it will be possible to increase the size of the structure

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 11/60

without unnecessarily impairing compatibility. See Resolved Issues, item 3.

TPEF file types. The fh_type member indicates the type of TTA code stored in this
file according to the following table:

fh_type Value File Type

FT_NULL 0x00 Illegal/Undefined file type.

FT_OBJSEQ 0x04 Sequential TTA object code.

FT_PURESEQ 0x05 Sequential TTA code without unresolved symbols.

FT_LIBSEQ 0x06 Collection of sequential TTA object files (library).

FT_MIXED 0x09 Partly scheduled code.

FT_PARALLEL 0x0D Fully scheduled or mixed fully scheduled/sequential
code.

All values not shown in table are reserved and cannot be used.

Sequential TTA code (FT_OBJSEQ), in the context of TPEF files, is defined as
completely unscheduled TTA code, possibly containing unresolved references to
procedures or variables. Sequential TTA libraries (FT_LIBSEQ) contain the type of
code of sequential TTA object files. Libraries may also contain additional information
to speed up and assist the linkage process. Pure sequential TTA code (FT_PURESEQ)
is completely unscheduled TTA code that [discuss] contains no unresolved references
and needs no linkage. Mixed TTA code (FT_MIXED) contains partially scheduled
instructions, that is, instructions where only some transports have all resources
assigned. Parallel TTA code (FT_PARALLEL), in the context of TPEF files, is fully
scheduled TTA code, where each instruction has all the needed machine resources
assigned. A TPEF file of TTA parallel code may contain pure sequential TTA code in
some procedures.

What changes with different file types is the amount of information stored, not the
format in which this information is stored. The file type indicates restriction on the
expected contents of a TPEF file. It must be considered just a “hint” for TPEF file
readers.

Support for different architecture templates. It is foreseen that the TTA Program
Exchange Format will be used by different TTA design toolkits, possibly based on a
different basic architecture template. The fh_arch field defines the basic TTA
(possibly templated) architecture of the file. The purpose of this field is to make it
easier to identify and ignore TPEF files for unknown TTA architecture templates.
These files should probably appear as partly corrupted TPEF file for the architecture
considered, hence the necessity for a clear marker.

The value of fh_arch determines how the program sections (instruction and data
sections) are encoded. Existing types of auxiliary sections should maintain the same
format independent of the architecture (template). The values currently defined for
fh_arch are listed in the table below.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 12/60

Name Value Description
NOARCH 0x00 Illegal/Undefined architecture
TTA_MOVE 0x01 Move design framework – Delft University of Technology

TTA_TUT 0x02 TTA template for the new TTA Codesign Environment –
Tampere University of Technology

TDS_TI 0x03 TTA Design Studio architecture by S. Pekarich – Texas
Instruments

The specification of the program section format contained in this document is
applicable to the new TTA template developed at TUT.

fh_shstrtab contains a file offset to a special string table section (see below), which
contains the names of the sections. This string table is not required. If not present,
then fh_shstrtab should contain zero.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 13/60

6. Section Header

Sections hold the bulk of file information: instructions, data, symbol table, relocation
information, and so on.

The section header describes the internal organisation of a file section, and allows a
TPEF reader to locate and interpret the raw data it contains. All section headers have
the same size.

Every section in a TPEF file must have a section header. The converse is not true (see
description of sh_flags structure).

Field Bytes Description

sh_name 4 Section offset to the name of the section (zero: no name
available).

sh_type 1 Section type.

sh_flags 1 Section flags.

sh_addr 4 If a program section (see below), starting memory address of
the section, zero otherwise.

sh_offset 4 File offset to the section data area.

sh_size 4 Size (in bytes) of the section data area stored in this file.

sh_id 2 Section identification number.

sh_aspace 1 Section address space identifier (zero if not applicable).

– 1 Padding byte. Must contain zero.

sh_link 2 Section identifier link (see below).

sh_info 4 Section-specific information.

sh_entsize 4 Size (in bytes) of a section entry.

The name of the section, if defined, is specified as a string table index in sh_name.
The file offset to the string table is specified by file header's member fh_shstrtab.

The sh_type field uniquely defines the purpose of the section according to the
following table:

Section Value Description

SHT_NULL 0x00 Inactive section.

SHT_STRTAB 0x01 Section holds a string table.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 14/60

Section Value Description

SHT_SYMTAB 0x02 Section holds symbol entries.

SHT_DEBUG 0x03 Section holds information for symbolic debugging.

SHT_RELOC 0x04 Section holds relocation entries.

SHT_LINENO 0x05 Section holds source code line numbers.

SHT_NOTE 0x06 Section holds information that marks file in some
way.

SHT_ADDRSP 0x07 Section contains address space information.

SHT_MDF 0x08 Section contains the complete machine description.

SHT_LIBTAB 0x09 Section contains auxiliary information for library
files.

SHT_MR 0x0A Section holds machine resource entries.

SHT_PROF 0x0B Section holds program profile data.

SHT_CODE 0x81 Section holds program instructions.

SHT_DATA 0x82 Section holds program’s data initialisation values.

SHT_UDATA 0x83 Section describes the program’s uninitialised data
area.

Values 0xA to 0xF and 0x84 to 0x8F are reserved for future extensions.

For a description of the section types listed in the table, see below.

The sections in a TPEF file are divided in two broad categories:

1. Program sections.

2. Auxiliary sections.

The most significant bit (0x80) of sh_type tells whether the section is a program (the
bit is ‘1’) or an auxiliary section (the bit is ‘0’), and its use is reserved.

A program section represents the contents of (part of) a TTA program. For a TTA
program to be run, the information contained in program sections has to be loaded in
the memory system of the target processor. Hence, program sections need additional
information about the addressing space where they should be loaded. Address space
information is stored in an address space table. The address space table is a section
that must be present in any TPEF file that contains program sections.

Program sections do not contain the exact memory image of the program, nor do they
dictate how the program is actually encoded in the memory. See Section 22 for more
information on data encoding.

There are two types of program sections: sections containing program instructions
(code sections) and sections containing program data (data sections).1 More than one

1 More types of program sections may be added in the future.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 15/60

section of both types can be present.

Auxiliary sections contain auxiliary information referring to one or several program
sections. For example, a Line Number Section refers to one code section (see below),
while a String Table or a global Symbol Table may contain data referring to several
program sections.

The sh_flags member contains a number of flags that define additional properties of
the file section that apply to any section type:

Flag Value Description

sf_nobits 0x80 Section is not initialised/not stored in this file (1).

sf_vlen 0x40 Section contains entries with variable length.

– 0x2F Reserved bit mask for future flags. Must be set to zero.

The flag sf_nobits specifies if the data area of the section is stored in the file. A
section’s data may be not stored when the section header is sufficient to convey all
(available) information about the section of when the information is simply not
available.

Member sh_addr gives the start address of the memory area corresponding to the
image of a program section. The number stored in sh_addr is the absolute address of
the first MAU of the memory image.

Member sh_size contains the size of the section in bytes. Unless the section has the
sh_flags flag sf_nobits=1, the section occupies sh_size bytes in the file. A section for
which sf_nobits=1 may have a non-zero size, but it occupies no space in the file.

Each section has a section identifier number, defined in member sh_id. This number
is unique across all file sections contained in the file, irrespective of their type. The
number zero is reserved for a special section of type SHT_NULL, described in
section.

If the section is a program section, sh_aspace contains a number that identifies its
address space. If the section is an auxiliary section, sh_aspace is not used and must
contain zero.

The section link member sh_link contains the section identification number of another
file section. The type of the referenced section depends on the section type and is
listed in the following table.

Section Type of section pointed at by sh_link

SHT_NULL SHT_NULL

SHT_STRTAB SHT_NULL

SHT_SYMTAB SHT_STRTAB

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 16/60

Section Type of section pointed at by sh_link

SHT_DEBUG SHT_SYMTAB

SHT_RELOC SHT_SYMTAB

SHT_LINENO SHT_SYMTAB

SHT_NOTE ?

SHT_ADDRSP SHT_STRTAB

SHT_ADF SHT_MR

SHT_LIBTAB ?

SHT_MR SHT_STRTAB

SHT_PROF SHT_CODE

SHT_CODE SHT_MR

SHT_DATA SHT_NULL

SHT_UDATA SHT_NULL

Member sh_info holds information that applies to the whole section and whose
interpretation depends on the section type. For example, auxiliary sections such as
Relocation and Line Number sections are tied to one program section (in the latter
case, a CODE program section). In these sections, the sh_info member contains a
reference to the program section.

The table below describes the use of sh_info member (if any) for each section type.
For a more detailed description the reader is referred to detailed section specifications.
When sh_info is not used, its value must be zero.

Section Data stored in sh_info member

SHT_NULL Unused.

SHT_STRTAB Unused.

SHT_SYMTAB Index of the first entry with nonlocal link scope [DISCUSS]

SHT_DEBUG Program section to which debugging information applies.

SHT_RELOC Program section that contains the references to relocate.

SHT_LINENO Code section where instructions of the source lines is stored.

SHT_NOTE Unused.

SHT_ADDRSP Unused.

SHT_ADF Unused.

SHT_LIBTAB ?

SHT_MR Unused.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 17/60

Section Data stored in sh_info member

SHT_PROF Unused?

SHT_CODE Size (in MAU’s) and/or type of encoding of instruction word.

SHT_DATA Unused.

SHT_UDATA Unused.

Shared Auxiliary Sections. [discuss: this part is messy] String table, debug, and
symbol table sections may be tied to a single program section or not. When they are
not tied to one particular section, these sections are assumed to be shared by multiple
program sections, and the sh_link member must contain SHT_NULL. In this case, all
program sections must share the auxiliary section.

File sections may contain pointers to strings (encoded as file offsets to string table
positions). TPEF allows the flexibility of separate or combined string tables for each
file section.

Some sections hold a table of fixed-size entries, such as a symbol table. For such a
section, the sh_entsize member gives the size in bytes of each entry. The member
contains 0 if the section does not hold a table of fixed-size entries. In that case, the
sf_vlen flag of sh_flags member must be set to 1.

Each memory address space is characterised by properties such as the “natural” and
the minimum addressable word size and the alignment. This information is defined in
a special section called address space table (see Section 10 of this document).

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 18/60

7. TPEF sections

This section describes properties that are shared by several (possibly all) TPEF
sections.

7.1. Section Format and Constraints

A TPEF file is organised into sections. A section is described by two items:
• A section header with fixed format, described in document Section 6.
• An optional data area or payload, whose format depends on the section type.

Section data areas have the following properties:
• A data area occupies contiguous sequences of bytes in the file.
• Data areas of different section do not overlap.
• It is possible for bytes of the file to be outside any section data area. Such

bytes may be located between data areas, between section headers and the first
data area or past the last data area. Such data is called inactive space and its
contents are out of the scope of the TPEF.

7.2. Undefined References to Section Elements

Certain sections, if their payload is stored in the file (sf_nobits=0) cannot have an
empty data area. These sections must always have an element reserved for special
purposes, the null element.

The null element is needed for those section elements that can be referred to from
other sections, and for which an undefined reference is possible.

Currently, null elements apply to the following sections:

• Address space table: reserved entry (identified by zero) for nonapplicable
references to address space.

• String section: null byte ‘\0’ representing undefined strings.

• Symbol table: zero-index entry reserved for undefined symbol references.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 19/60

8. General Properties and Constraints

This section describes properties and constraints that apply to the TPEF file in its
entirety.

8.1. Range Limits

TEPF files contain several instances of integer numerical data types that represent
references (addresses, identification codes, indices or offsets). Depending on the
reference type, a different bit width and thus a different range of values is admitted.
These range limits are an essential part of the format, they pose hard constraints on
the capabilities of TPEF.

The following table lists the upper range limit of file-wide reference types that are
encoded as integer numbers.

Reference Range Limit Description

– 0xFFFFFFFF Section offsets (section-specific references).

– 0xFFFFFFFF Data sizes (in bytes, sh_size and section-specific).

sh_offset 0xFFFFFFFF File offset.

sh_addr 0xFFFFFFFF Address in an address space.

r_symbol 0x00FFFFFF Symbol table entry index.

sh_id 0x0000FFFF Section identification code.

sh_aspace 0x000000FF Address space identification code.

8.2. Bit Width of Encoded References

No matter what the bit width of the encoded reference and thus the range limit is, the
following rule applies to all references encoded in a TPEF file: Any reference of a
given type must be encoded in a number of bits sufficient to represent any reference
of that type. In other words, an n-bit reference data type must always be encoded in n
(or more) bits.

8.3. Undefined References

If a reference to a given type of data items may be undefined or not applicable, a
special instance of the data type must be reserved for such references.

For example, references to sections may be undefined, not applicable or irrelevant.
Therefore, TPEF defines a special section type and a reserved identification number
for the Null Section. Other examples of such reserved instances, where the data item
is a section element, are described in section 7.2.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 20/60

9. Null Section

The Null Section represents an invalid section and is used for section references in
cases where no section is applicable. A section header for the Null Section must be
always present and has the value zero assigned its sh_id. The following table shows
the values of section header of the Null Section.

Field Value Notes

sh_name – Any name string is allowed, including the null string.

sh_type 0 SHT_NULL

sh_flags 0x80 Section data area is not stored in this file.

sh_addr 0 Not applicable.

sh_offset 0 Not applicable.

sh_size 0 Size is always zero.

sh_id 0 Reserved section identification number.

sh_aspace 0 Not applicable.

sh_link 0 No link = link to Null Section itself.

sh_info 0 Ignored, must be set to zero.

sh_entsize 0 Not applicable.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 21/60

10. Address Space Table section

In a TTA program, different program sections can be stored in independent memories.
As a result, a TTA program may contain identical addresses that refer to entities
stored in different memories. Each memory defines an independent address space.
Since an address may refer to completely different entities in different address spaces,
relocation information must take address spaces into account. The Address Space
Table is stored in a special section (sh_type SHT_ADDRSP) and holds the main
properties of the address spaces used by the program sections of the file. There must
be one and one only Address Space Table section in a TPEF file. The Address Space
Table contains one entry for each address space.

Field Bytes Description

asp_id 1 Unique identification number of this address space.

asp_mau 1 Minimum addressable unit bit width of this memory.

asp_align 1 Alignment (in asp_mau units) of the natural word of this
memory.

asp_wsize 1 Size (in asp_mau units) of the natural word of this memory.

asp_name
4

Section offset to string table entry for the name of this
element.

The asp_id value zero has a special meaning. The first address space entry is assigned
identification number zero. This entry is described later.

The asp_mau field can contain zero. In this case, the bit width of the words is not
known. If asp_mau is zero, the size of the natural word given by asp_wsize field must
be 1. In practice, only the MAU of an address space that contains program
instructions can have undefined bit width.

The addresses stored in a program section and in its relocation section are expressed
in asp_mau units. All sizes contained in symbol table are also assumed to be in
asp_mau units.

The asp_align field is necessary to verify that the memory addresses to natural word
(see below) are not misaligned.2

Example. Alignment of a natural word. A memory with 8-bit MAU (asp_mau =8)
could hold 4-MAU natural data words (asp_wsize =4) with 2-MAU alignment
constraint (asp_align =2). The address 0x7F02 can adddress a natural word, whereas
0x7F01 cannot.

The “natural” word is the data word of the bit width for which the target architecture
gives full (or most extended) support. In practice, the natural width of the data section
is the width closest to the bit width of general-purpose registers. In address spaces that
contain only instructions, the natural word is the minimum addressable unit. The
alignment constraints of instruction addresses (when applicable) are determined by

2 TPEF clients may choose to ignore misaligned words. Ultimately, it is responsibility of the client
that manipulates a TTA program to verify that all addresses of the target memory system are valid.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 22/60

the size of the word (member sh_info of code section header) and are unrelated to
asp_align and the concept of natural data word.

Null Address Space. The first address space entry has asp_id = 0 and does not define
a real address space. It is a placeholder. Its identification number is used in all cases in
which a field should contain a reference to an address space, but no actual address
space is applicable in the context. For example, no address space is applicable to
auxiliary sections. This address space entry is always present in the address space
table and has the following values:

Field Value Notes

asp_id 0 Reserved identifier: no real address space.

asp_mau 0 Minimum addressable word size not applicable.

asp_align 0 Alignment of the natural word not applicable.

asp_wsize 0 Size of the natural word not applicable.

asp_name 0 Null address space has no name: null string.

All program sections must have a non-zero address space identifier.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 23/60

11. Code section

Code sections (sh_type SHT_CODE) contain program code, that is, TTA instructions.
A TTA instruction specifies one or more data transports that take place in the same
clock cycle. Each data transport is programmed by means of a simple operation called
move.

Instruction size in memory image. The format of instructions stored in a TPEF code
section has nothing to do with the binary encoding in the target memory system.
Consequently, the size of the instructions stored in a code section does not correspond
to the actual length in the memory image of the program. However, the instruction
length is necessary in order to correctly compute the target instruction corresponding
to an instruction address as stored in a program section. For this reason, the
instruction length (or a reference to the algorithm used to compute it) is stored in field
sh_info of code section header according to the following table.

sh_info field Bytes Description

in_size 0–1 Length (in MAU’s) of instructions in program image; zero
if length is undefined or variable.

in_enc 2 Instruction encoding algorithm; 0x00 means undefined.

– 3 Padding byte. Must be zero.

Member in_size contains the length of the TTA instructions, expressed in MAU’s. If
the instruction encoding algorithm produces instructions of variable length then
in_size contains zero.

If fh_arch is TUT_TTA, in_size is ignored, and treated as if it were ‘1’.

Member in_enc contains a number that identifies the algorithm used to encode the
TTA instructions in the target memory. Values 0x00 to 0x7F are reserved to fixed-
length encoding algorithms; values 0x80 to 0xFF are reserved to variable-length
encoding algorithms. Value 0x00 is reserved to undefined encoding. If the encoding
algorithm is undefined, then the instruction size must be defined.3

In fh_arch is TUT_TTA, in_enc must be set to 0x00.

Instruction elements. A code section contains variable-length instruction elements.
Each element represents either a move or an immediate, which is a constant value
encoded in the instruction stream and used by a move. Several adjacent elements form
a TTA instruction. Each element consists of two parts: a fixed-length attribute
member and a variable-length, type-dependent part.

The attribute member i_attr discriminates immediate elements from move elements
and specifies certain attributes. The attribute member is one byte long and is
subdivided in a number of fields. The meaning of the attribute fields and their bit
mask is described in the following table.

3 If both in_size and in_enc are zero, then the instruction length is unknown and the code section
cannot be fully interpreted.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 24/60

i_attr field Mask Description

ia_type 0x01 Type of element: immediate (1) or move (0)

ia_end 0x02 End-of-instruction (1)

ia_annote 0x04 Contains annotation (1)

ia_empty 0x08 Empty instruction (1)

ia_immsize 0xF0 Number of bytes used to encode the immediate

ia_mguard 0x10 Conditional move (1) or unconditional move (0)

Member ia_immsize gives the number of bytes (1–16) that are used in the TPEF file
to encode the immediate value. This number does not necessarily reflect the exact bit
width of the immediate, which doesn’t have to be a multiple of 8. For example, the
20-bit immediate with binary representation 00000000 000011111111 (0xFF) could
be stored in 1 byte instead of 3.

For immediate elements the format of the attribute member is the following:

For move elements the format of the attribute member is the following:

Unused fields are reserved for future use, and must be set to zero.

In-line annotations. Annotations are a mechanism to augment an instruction element
with additional, arbitrary and application-dependent information without disrupting
the normal working of other TPEF applications. All annotations that are not
recognised by an application must be preserved unchanged. The ia_annote flag
specifies whether the instruction element contains one (or more) variable-size, in-line
annotations. An annotation consists of a number of bytes in the range 4–131 and has
the following format:

Field Bytes Description

an_size 1 Length (in MAU’s) of the payload of the annotation.

an_id 3 Identification code.

– 4..127 Free-format, variable-length payload.

Annotations consist of two parts: a fixed part and a free part. The contents of the free
part represents the “payload” of the annotation and are out of the scope of the TPEF
specification, and depend on the specific application that creates, reads or modifies
those annotations. The common part consists of 2 fields. The first, an_size, contains

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 25/60

0ia_immsize

ia_end

ia_annote ia_type

ia_mguard

ia_empty

0–––

ia_empty ia_end

ia_typeia_annote

the number of bytes that make up the annotation payload and the continuation bit.
When the continuation bit (mask: 0x80) is set to 1, the annotation is followed by
another annotation. Member an_id contains a unique identification number that
allows applications to recognise the annotations they define or use from annotations
used by other applications. There is no formal mechanism to prevent clashes in the
identification space, but the availability of over 16 million identification numbers
should minimise the risk of annotations with conflicting identifiers. The identification
numbers in the range 0x000000 – 0x00FFFF are reserved for future expansions of the
TPEF standard.

Empty instructions are specified by means of a single instruction element with
ia_empty and ia_end flags set to1. The type of the element given by ia_type is
ignored. To represent a well-formed empty instruction, also the ia_end flag of the
previous element must be set to 1. No other member of an empty instruction is stored
(except, when applicable, in-line annotations).

Guarded moves are specified by ia_mguard=1. When ia_mguard=0, the move is
always executed. The move fields mv_grfu and mv_gndx (described later on) are
present only when the move is guarded.

11.1. Immediate Element

The Immediate Element specifies an immediate value (a run-time constant) used by
one or more moves. The following table shows the members that make up an
immediate element.

Field Bytes Description

i_attr 1 Instruction element attribute member.

im_dunit 1 Destination unit for an immediate field; 0 for in-line.

im_index 1 Destination identifier or index of the immediate register.

im_image 1..16 Bit vector that represents the immediate value.

In addition to the fixed-size attribute member i_attr, an immediate element contains
three fields: im_dunit, im_index and a vector of ia_immsize bytes. Each byte of this
vector contains 8 bits of the immediate value.

Immediates are not necessarily encoded in the target-architecture format. The format
is 2’s complement for integer numbers and IEEE-754 for floating-point numbers.

Every immediate has a destination. Such destination may be a physical register (such
is the case of immediates containing large constants, or long immediates) or an
identifier of the move source field where the immediate is actually encoded. In the
second case, the immediate element must be stored in the same instruction where the
move using it is stored (in other words, no intervening element can have ia_end flag
set to 1), and must precede the move. The destination is specified by members
im_dunit and im_index. The first identifies the destination immediate unit; the second
identifies the destination register within the immediate unit. In-line immediates are a
special case signalled by im_dunit=0x00; in this case, member im_index is a unique
number that identifies the immediate within the TTA instrucition that contains it.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 26/60

Example: Encoding of an immediate that contains the unsigned integer number 200:

member im_dunit signals that no (architecturally visible) physical register is assigned
as destination of the immediate; this means that either the immediate bits are encoded
directly in the source field of moves (in fully scheduled moves) or no destination
register (and no instruction bits) has been assigned to this immediate. In this example,
imd_index=5 uniquely identifies the source field of the move in current instruction
where the immediate bits are encoded. This is the move that reads the immediate. The
same index 5 appears in the source field of the move.

Example: Encoding of an immediate that contains the 4-byte number 0xABADF00D:

An immediate element for a 4-byte long number takes 7 bytes. In this example,
ia_end=1, thus the immediate is the last element of the current instruction. Member
im_dunit specifies that the immediate destination is a register in the immediate unit
identified by a machine resource entry of type MR_IU with index 3. Because this is a
real entry, it implies that the immediate bits are encoded in (fields of) an instruction,
rather than in a move source field. Member im_index specifies that the immediate is
written into a physical register with index 2. The immediate element can be part of an
instruction several cycles before the first use of the immediate, and the immediate
may be used by several moves.

11.2. Move Element

A move element describes a move and consists of a variable number of members,
shown in the following table.

Field Bytes Description

i_attr 1 Instruction element attribute member.

mv_bus 1 Move bus identifier.

mv_type 1 Move source/destination type fields.

mv_sunit 1 Move source unit.

mv_sndx 2 Move source register index/identifier.

mv_dunit 1 Move destination unit.

mv_dndx 2 Move destination register index/identifier.

mv_grfu 1 Move guard function unit/register file.

mv_gndx 2 Move guard index/identifier.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 27/60

01000011 00000011 10101011 10101101

i_attr im_dunit

i_attr im_dunit im_image[0]

00010001 00000000 11001000

im_image[3]im_image[1] im_image[2]im_image[0]

im_index

00000101

10000010 11110000 00001101

im_index

A scheduled move is part of a parallel instruction, which specifies several concurrent
data transports. A fully scheduled move is assigned the processor components (such
as registers, encoding bits, the transport bus and the connections) it needs to carry out
its data transport. At the other end of the spectrum, an unscheduled move specifies
only the source and destination register of the data transport. See section 23
“Unscheduled Target TTA” for details on the unscheduled (or “sequential”) target
TTA implied by TPEF architecture template identified by fh_arch = TTA_TUT.
Details on the conventions and restrictions that apply to programs for TTA_TUT
target architecture template can be found in [3].

To distinguish sequential TTA code from parallel code even within the same program
section, a hardware component identification number is reserved for the transport bus,
the function unit, and a number of register files (see below for details).

The move bus specifier mv_bus is simply a number that uniquely identifies a bus of
the target processor. This number can express up to 127 (0x01 to 0x7F) transport
busses. The values 0x80 to 0xFF are reserved for future extensions. (Probably,
additional information on the transport resources used by the move.)

Member mv_type is divided into three fields that specify the type of source,
destination and guard fields of the move.

mv_type field Mask Description

– 0x01 Unused bit

mvt_src 0x0E Move source type

mvt_dst 0x30 Move destination type

mvt_grd 0xC0 Move guard type

The source field of move elements can specify one of the following:

1. a general-purpose register,

2. one of the results of an operation (and thus, implicitly, an output port of the
function unit assigned to the operation),

3. a special/reserved register (and thus, implicitly, a function unit port),

4. a long immediate register,

5. a number that identifies an immediate encoded in the move source field,

6. a bridge register that contains the value on an adjacent bus in previous cycle.

The types of destination field are:

1. a general-purpose register,

2. one of the operands of an operation (or, equivalently, a function unit input port),

3. a special/reserved register (and thus, implicitly, a function unit port).

The following table shows how the type of source fields is encoded.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 28/60

Value Encoding Description

MVS_NULL 0x00 Undefined source, not used.

MVS_BRIDGE 0x02 Bridge to adjacent transport bus.

MVS_RF 0x04 Variable or general-purpose register.

MVS_IMM 0x08 Immediate register or in-line immediate.

MVS_UNIT 0x0C Operation output (function unit output port).

The following table shows how the type of destination fields is encoded.

Value Encoding Description

MVD_NULL 0x00 Undefined destination, not used.

MVD_RF 0x10 Variable or general-purpose register.

– 0x20 Illegal destination.

MVD_UNIT 0x30 Operation input (function unit input port).

There are four types of guard fields, determined by two flags. The following table
shows how the flags are encoded.

Field Mask Description

mvg_inv 0x40 Guard of the move inverted (1) or not inverted (0).

mvg_rf 0x80 Guard source is a GPR (1) or a FU output (0).

Bit 0x01 of member mv_type is reserved for future expansion and must be set to zero.

The type of move source and destination specified by mv_type determines how source
and destination members are interpreted. The source and the destination of a move are
described by means of two members each: mv_sunit, mv_sndx for the move source,
mv_dunit, mv_dndx for the move destination.

Every function unit, register file, immediate unit and bridge register in the target
processor is assigned a unique identification number. Members mv_sunit, mv_dunit
contain a number that identifies an instance of one of the following types of resources:

1. for general-purpose registers of any type: register file,

2. for inputs or outputs of an operation, or for FU ports: function unit,

3. for special registers: function unit,

4. for bridge registers: transport bus that writes the bridge register.

In addition, mv_sunit can specify also the immediate unit of an immediate source.

In case the source (destination) of a move is a result (operand) of an operation, or a
FU port, mv_sunit (mv_dunit) gives the function unit the operation is assigned to.

Reserved units. The values 0x80 to 0xFF of register files are reserved to variable
pools. Variable pools are not real register files; they contain a finite, unbounded

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 29/60

number of variables of predefined bit width (data type). See Sections 12 and 23 for
details on the reserved identifiers for the architecture of unscheduled code.

The value 0x00 of mv_sunit, mv_dunit, for any resource type, is reserved and has a
special purpose, described in Section 12.

The second member of the move source and destination define:

1. for variables and general-purpose registers: index of the register or variable,

2. for function units: numbers identify the machine resources (entries in MR section)
of one of the following types: operand or the result of operation (MRT_OP),
special register (MRT_SR), or port (MRT_PORT).

In addition, member mv_sndx can also define one of the following:

1. for in-line immediates: identifier contained in member im_index of the immediate
element that defines the immediate value (see above),

2. for long immediates: index of the immediate register.

If mv_sunit specifies a bridge source, then member mv_sndx is unused.

The input and output identifiers of different implementations of the same operation
don’t have to be unique. Operation inputs and outputs corresponding to ports in
different units can be identified by the same numeric code, if they belong to different
implementations of the same operation. Similarly, port resources in different units can
share the same numeric code and entry in the resource table. The meaning of the unit
and operation input/output identifiers is fully specified by means of (mandatory)
auxiliary information. See Section 12 for details.

Member mv_grfu identifies the unit (register file or function unit) that contains the
data from which the result of the guard expression is computed. This number can
express up to 255 register files or function units, including those reserved for
unscheduled code.

Member mv_gndx identifies the source of the data used to compute the result of the
guard expression. Depending on the type of unit it can represent:

1. for register files: index of the register or variable,

2. for function units: a number (restricted to range 0x0000 – 0x7FFFF) that
identifies a result of an operation.

Examples. Move encoding.

Let us consider an instruction element containing the following unscheduled move:

r124 -> div.1

this move specifies a data transport from variable ‘r124’ to the first (index one)
operand of the integer divide operation. Supposing that the operand index mv_dndx
assigned to operation input ‘div.1’ is 29, the element takes up 9 bytes and is encoded
as follows:

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 30/60

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 31/60

 i_attr mv_bus mv_type

00000010 00000101 00010111

mv_sunit

10000000 00000000 01111100

mv_dunit

00000000

mv_dndx

mv_sndx

00000000 00011101

12. Processor Resource Table section

While TPEF does not require a complete description of the target architecture, parts of
the program need to refer to processor components (machine resources, in instruction
scheduling jargon). The Processor Resource Table is stored in a special section
(sh_type SHT_MR) and contains resource description elements. Each element is
identified by a number and describes a processor component or, indirectly, a part of it.

Machine resources are of different ypes. Each type has its own set of unique
identification numbers. The following types of machine resources are recognized:

1. busses,

2. register files,

3. function units,

4. immediate units,

5. operation inputs/outputs,

6. special registers,

7. function unit ports.

A resource description element has the following structure.

Field Byte
s

Description

mr_index 2 Machine resource identification number.

mr_type 1 Machine resource type (see below).

mr_name 4 Element name, as section offset to string table entry.

The mr_type field specifies the type of machine resource and can have one of the
following values.

Resource Type Value Description

MRT_NULL 0x00 Illegal undefined machine resource.

MRT_BUS 0x01 Transport bus.

MRT_UNIT 0x02 Function unit.

MRT_RF 0x03 Register file.

MRT_OP 0x04 Operation input or output.

MRT_IMM 0x05 Immediate unit.

MRT_SR 0x06 Special register.

MRT_PORT 0x07 Function unit port.

The string table where the names of the resources are stored is specified by the
sh_string element of the section header.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 32/60

Identifiers of type MRT_BUS are restricted to the range 0x0000 – 0x007F. The range
of identifiers of types MRT_UNIT, MRT_RF and MRT_IMM is 0x0000 – 0x00FF.

The machine resource MRT_OP represents the combination of two pieces of
information:

• an operation (opcode);

• the index of an operation input or output.

The input or output of an operation, given any target architecture compatible with the
program, implicitly defines also the port of the function unit, through the binding
declaration (see ADF specifications, [3]).

The machine resource MRT_SR represents special-purpose registers attached to a
function unit. Special registers are identified by fixed, unique string names. The only
special register recognised is the return address register (RAR), identified by the
string ‘return-address’.

The machine resource MRT_PORT represents a function unit port. Ports are
identified by a fixed name string, which is unique within the function unit but not the
target architecture. It is possible to “share” the same resource port entry to refer to
several ports, as long as they belong to different function units.

Shared space of identification numbers. All resource types that are related to a
function unit (operations, special registers, ports) share the same id space. It is not
possible that, for example, an MRT_OP and a MRT_SR entry have the same
mr_index value.s

Reserved identification numbers. The following resource identification numbers are
reserved to the architecture of unscheduled TTA code (see Section 23 for details).

Resource Type Value Description

MRT_BUS 0x0000 Unassigned bus.

MRT_UNIT 0x0000 Universal function unit.

MRT_RF 0x0000 Illegal register file assignment.

MRT_RF 0x0080 Integer variable pool.

MRT_RF 0x0081 Boolean variable pool.

MRT_RF 0x0082 Floating-point variable pool.

MRT_IMM 0x0000 Signals an in-line immediate.

The register file identifier 0x00 is illegal.

References to reserved identification codes can be mixed (even in the same move
element) with references to identification codes of normal resource description
elements. Thus, TPEF code section can contain partially scheduled TTA instructions.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 33/60

13. Initialised data section

A data section (sh_type SHT_DATA) contains the values with which program
variables are initialised before the program is started.

The bits contained in a data section reflect the raw data encoding of a byte-addressed,
big-endian architecture that represents integer numbers in 2's complement binary
form, and real numbers in either 32 or 64-bit IEEE-754 standard floating-point
representations. This data encoding may or may not match the data encoding of the
target architecture. See Section 22 for more details on how program data should be
accessed.

Member sh_elsize contains the size of the minimum addressable word of the section,
expressed in bytes (see Section 22 for a description of how this value is computed).

The size of data sections is stored in sh_size, and is expressed in bytes. The size of the
corresponding memory image in the target memory system, expessed in minimum
addressable words, of asp_mau bits (see Address Space Table, Section 22), can be
computed with the help of member sh_elsize.

For example: given a data section of an address space that is addresses by 12-bits
words with a size (sh_size) of 824 bytes and with sh_elsize = 2, the number of MAU’s
stored in this data section is 412.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 34/60

14. Uninitialised data section

A data section that contains uninitialised data4 (sh_type SHT_UDATA) is typically
not stored in TPEF files. Hence, sh_flags bit sf_nobits is expected to be set. In this
case, the contents of sh_offset member are ignored.

Member sh_elsize contains the size of the minimum addressable word of the section,
expressed in bytes.

The size of uninitialised data sections is stored in sh_size, and is expressed in bytes.
To compute the corresponding number of minimum addressable words of asp_mau
bits (see Address Space Table section for details), the size in bytes must be divided
by the size of the section element, sh_elsize.

4 In some file formats, e.g. BSD a.out and ELF, sections containing uninitialised data are termed
“BSS” sections.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 35/60

15. Symbol Table section

Symbols map strings to values (typically, names to addresses). The linker refers to the
name of a symbol until its address has been assigned (resolved). Debuggers use
symbol names to represent program information in a form that is more readable to
humans. Symbols consist of a fixed-length entry in the symbol table and a variable-
length name in a string table (see Section 18).
A symbol table entry holds information needed to locate program symbolic
definitions and references. Symbol tables contain entries of various types. All are
always referred to by their index into the symbol table section.
A symbol table entry has the following structure.

Field Bytes Description

st_name 4 Name of the symbol, section offset into the string table.

st_value 4 Value of the symbol.

st_size 4 Size of the symbol, in bytes. Zero if not defined or not
applicable to the symbol type.

st_info 1 Type and binding attributes of the symbol.

st_other 1 Symbol value descriptor.

st_section 2 Section to which the symbol belongs.
The first entry of every symbol table section (index 0) is reserved to undefined
symbol references. The symbol table entry for undefined references is described later.
The meaning of the value of a symbol table entry depends on the symbol type. For
symbols that belong to code and data sections the value represents an address; for
other symbols it may be arbitrary.
Member st_size, when nonzero, holds the size of the symbol, given as the number of
bytes taken by the symbol in this file. The correspondence between bytes in the file
and the actual size in the memory image is determined by the encoding rules
described in Section 22. The size of certain symbols, such as instruction labels, is
irrelevant and sometimes is not even unknown. For these symbols, st_size is always
zero.
If a symbol with nonzero st_size belongs to a section whose data area is not stored in
the TPEF file, then the size gives the number of bytes that the symbol would take if it
were stored in the TPEF file.
Member st_info is subdivided in two: the upper half (4 bits) specifies the binding
attributes of the symbol; the lower half specifies the symbol type.
The binding attribute determines the linkage scope of the symbol and how the linker
must treat it:

Binding Value Description

STB_LOCAL 0x0
Symbol is only visible in the program sections that
come from the file that contains its definition.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 36/60

Binding Value Description

STB_GLOBAL 0x1
Symbol is visible to all program sections that have
the same address space of the symbol.

STB_WEAK 0x2
Symbol visibility is equal to STB_GLOBAL
symbols, but its linkage priority is lower.

– 0x3..0xF Reserved for future extensions.
Local symbols have STB_LOCAL binding attribute and must be defined in the same
object file in which the symbol entry appears. In other words, the symbol definition
and all its uses must belong to the same compilation unit (part of a program that must
be compiled as an atomic entity). The definition of a local symbol does not interfere
with other symbols with the same name defined in other compilation units. Therefore,
several local symbol entries with the same name may be linked together.
Global symbols have STB_GLOBAL binding attribute and are visible to all
compilation units that make up the TPEF file. Only one file must contain the
definition of a global symbol. The symbol must be undefined in all other compilation
units that contain references to it. The definition of a global symbol will satisfy all
unresolved references to a global symbol with that name in other compilation units.
Symbols with STB_WEAK attribute are similar to global symbols. They differ in the
following aspects:
1. Weak definitions do not cause a linkage error if a global definition exists. In that

case, the global definition simply “overrides” the weak definition.
2. The linker does not extract definitions of weak symbols in archive files (libraries)

to try to resolve undefined weak symbols. Unresolved weak symbols do not cause
linkage error; they are assigned value zero.

The symbol type provides a general classification of the associated symbol table entry
according to the following table:

Symbol Type Value Description

STT_NOTYPE 0x0 The symbol’s type is not specified.

STT_DATA 0x1 The symbol is associated with a data object.

STT_CODE 0x2 The symbol is associated with executable code.

STT_SECTION 0x3 The symbol is associated with a section.

STT_FILE 0x4
The name of this symbol gives the name of the
source file associated with this object file
(possibly, the entire TPEF file).

STT_PROCEDURE 0x5
The symbol is associated with executable code
and marks procedure name.

– 0x6..0xF Reserved for future extensions.

Entries with type STT_DATA or STT_CODE refer to a program section. Their
st_value member represents a section offset. An STT_DATA symbol table entry
refers, for example, to variables, arrays or data structures. An STT_CODE symbol

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 37/60

table entry refers, for example, to function entry points or code labels. Entries with
STT_SECTION type are related to a given section and typically contain relocation
information. Entries with STT_FILE denote the point in the symbol section where the
area dedicated to a given object file starts, and have always STB_LOCAL binding
attribute. An STT_PROCEDURE symbol is similar to STT_CODE symbol, but
STT_SECTION is used for indicating procedure start positions.
The meaning of members st_value and st_size for a given section type is given in the
following tables:

Symbol Type st_value st_size

STT_DATA Section offset. Size of data object, in bytes.

STT_CODE Section offset. Unused.

STT_NOTYPE Unused (zero). Unused.

STT_SECTION Section offset. Size (byte)?

STT_FILE Section offset? Unused? Unused?

STT_PROCEDURE Section offset. Unused.
Typically, symbols are defined in relation to some section. A symbol’s value must be
updated (relocated) if the section is modified. The member st_section of a symbol
table entry specifies the section for which the symbol is defined. If no section applies
or if the section is undefined, then st_section contains the Null Section identifier
(zero). The Null Section is described in Section 9 of this document.
Certain symbols, such as symbols that represent source file names (STT_FILE symbol
type), have an absolute value. These values do not represent section offsets or
addresses, and must not be relocated. Absolute symbols are signalled by flag sto_abs
of member st_other, as shown in following table:

st_other Bit
Mask

Description

sto_abs 0x80 Symbol relocation type: absolute (1), relocating (0).

– 0x7F Reserved to future extensions, must be zero.
Symbol ordering. [discuss] In each symbol table section, all local symbols precede
weak and global symbols. The sh_info member of the symbol table section header
holds the index of the first non-local symbol of the table. If present, a STT_FILE
symbol table entry must precede all other entries that refer to the same file.

15.1. Symbol entries

Reserved entry for undefined symbol references. The first symbol table entry is
reserved and has a special meaning. Its index (zero) is used in lieu of a proper symbol
table index whenever the symbol referenced is unknown or no symbol is applicable. It
contains the following values:

Field Value Notes

st_name 0 No name assigned.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 38/60

Field Value Notes

st_value 0 Value is undefined: always zero.

st_size 0 Size of the symbol is not defined.

st_info 0 Symbol’s type undefined.

st_other 0x80 Not a relocating symbol (value always zero).

st_section 0 Null section (section undefined).
See Section 25.6 for a possible extension of the symbol table entry format.
Symbol table entry for program entry point. To mark the first instruction of the
program that is executed, TPEF provides a special symbol table entry with reserved
name. The symbol table entry has the following values:

Field Value Notes

st_name – Assigned to string ‘__tta_program_entry’.

st_value – Section offset to entry instruction element.

st_size 0 Size of the symbol is not defined.

st_info 0x12 Code symbol with global binding.

st_other 0x00 Relocating symbol.

st_section – Code section that contains the program entry point.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 39/60

16. Relocation section

Relocation is the process of connecting references to symbols with definition of the
corresponding symbols. Relocation sections (sh_type SHT_RELOC) contain
information that describes how to modify the references (addresses) contained in
program sections.5

A relocation table applies to references of one section only. The first 2 bytes of the
sh_info field of a relocation section header contain the identifier of the section that
contains the references.

The format of the relocation section depends on the target architecture template
(fh_arch) and is out of the scope of general TPEF specification. The reminder of this
document section specifies the format of the target architecture template for fh_arch =
TTA_TUT.

Field Bytes Description

r_offset 4 The section offset to the location where relocation applies.

– 1 Reserved for future extensions. Must be zero.

r_symbol 3 Symbol table index of the referenced symbol.

r_type 1 Type of relocation to apply.

r_asp 1 Address Space identifier of the address to relocate.

r_size 1 Bit width of the field containing the address.

r_bitpos 1 Bit offset into the address to relocate.

Member r_offset gives the location at which the relocation applies. This location
contains a pointer to the symbol to be relocated. If the location belongs to a code
section, the section offset points to the first byte of the immediate element that
contains the address to be relocated.

Member r_symbol gives the symbol table index of the symbol with respect to which
the relocation must be made.

Relocation chunks. In TTA programs, a pointer to a symbol may be cut into pieces
called chunks. A chunk is a subword that, combined with the other chunks of the same
pointer, forms the complete address of a symbol. A symbol pointer divided in chunks
requires one relocation entry for each chunk.

Member r_type specifies the type of relocation to apply and how the relocation is
divided in chunks. The upper half of r_type gives chunk information. The lower half
gives the relocation action.

5 Only initialised program sections can be relocated. Unitialised data (usually automatically zero-ed
at startup) cannot contain variables containing zero as explicit initialization values, because such
variables could represent the zero address of a program section, and thus require relocation.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 40/60

The supported relocation actions are listed in the following table.

Value Encoding Description

RT_NOREL 0x0 No relocation.

RT_SELF 0x1 Absolute address, relocate relative to address self.

RT_PAGE 0x2 Paged address, relocate page offset.

RT_PCREL 0x3 PC-relative, relocate only if displacement changes.

– 0x4..0x7 Reserved for future extensions.

– 0x8..0xF Reserved to specific architecture templates.

Relocation actions adjust a location that contains the address of another location (the
target address). The value of the target address is stored in the section that contains
the location of the reference.

The relocation action RT_SELF applies to absolute addresses. The relocator computes
and adds a displacement to the original target address. Target address and the address
of the location that contains the reference may belong to different address spaces.

The relocation action RT_PAGE applies to absolute addresses, but the location to be
adjusted contains only the lower bits (the page offset) of the target address. The target
address and the location to be relocated are in the same address space. The address
refers to the memory page of the location where the reference is made. However, the
location pointer at by r_offset is the location where the reference is stored. This
location does not affect the displacement, as long as the distance between the two
locations does not change.

The relocation action RT_PCREL applies to addresses that are stored as a
displacement from the location of the reference to the target address. These addresses
do not need adjustment (see section 25.8 for a possible extension to this type of
relocation entries). Target address and the address of the location that contains the
reference are in the same address space.

The address of the symbol to relocate can be divided in up to 8 chunks. Only
addresses stored in code sections can be divided in chunks. A chunk may be encoded
in one or more instruction slots of a long immediate or may be an in-line immediate.

The upper half of member r_type specifies whether the relocation entry is a chunk:

st_type field Mask Description

stf_chunk 0x80 Relocation applied to chunk (1) or complete address (0).

– 0x70 Not used, the bits must be set to zero.

If flag stf_chunk is set, then the relocation entry refers to a chunk of a larger address.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 41/60

Member r_size gives the bit width of the address (or the chunk thereof) to relocate.
The bit width is a number in the range [1,64] encoded with bias –1, that is, 1 has to be
added to the value stored in r_size to obtain the actual bit width. The most significant
bits (bit mask 0xC0) must be always zero.

Member r_bitpos gives the position of the least significant bit of the chunk into the
complete target address word. In non-chunked relocation entries, r_bitpos is always
zero. The most significant bits (bit mask 0xC0) must be always zero.

How relocation entries of chunked addresses are stored. The relocation entries of
chunks that belong to the same address must be stored contiguously. It is an error if an
unrelated relocation entry is stored between two relocation entries for chunks of the
same symbol reference. Given that chunks must not overlap and must not leave
unspecified bits, it is always possible to tell whether the group of relocation entries for
a chunked symbol reference is complete. The last chunk has r_bitpos=0.

Example: Encoding of a group of relocation entries for a symbol address (original
value: 0xA1B2C3) that is stored in three separate in-line immediates, 0x286, 0xB2,
0xC3, as shown in the following piece of code:

0x286 -> shl.1, 14 -> shl.2;
shl.3 -> r2, 0x32 -> shl.1, 8 -> shl.2;
shl.3 -> ior.1, r2 -> ior.2;
ior.r -> ior.1, 0xC3 -> ior.2;
ior.r -> ld.t;

Assuming that the in-line immediates 0x286, 0x32, 0xC3 are, respectively, 10, 6 and
8-bit long, three relocation entries are required for this reference to the symbol. The
value of members r_type, r_size, r_bitpos of these three immediates is:

See Section 25.7 for possible extensions to the format of the relocation section.

The following diagram depicts the relations between a relocation section, a symbol
section, a program section containing the reference to be relocated and the data
section where the referenced symbol is stored.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 42/60

r_type r_size r_bitpos
10000001 00001010 00001110chunk 1

r_type r_size r_bitpos
10000001 00000110 00001000chunk 2

r_type r_size r_bitpos
10000001 00001000 00000000chunk 3

The dashed arrows represent section references through sh_id. The solid arrows
represent the following references between section elements of different sections:

1. Section offset to the first byte of the section element to which relocation applies.

2. Index of the symbol table entry for the symbol to which relocation applies.

3. Section offset to the first byte of the data block where the initialisation value of
the referenced symbol is stored. If the symbol is not initialised, the data area is not
(usually) stored in TPEF, and the section offset is the byte offset from the
beginning of the uninitialised memory area, considering the conversion between
MAU’s of the address space and TPEF bytes described in Section 22.

Moreover, the size of the data block where the referenced symbol is stored is given by
the symbol entry member st_size. This size is computed in bytes. For example, if the
symbol data block takes 4 MAU’s and each MAU of its address space takes 2 (8-bit)
bytes in the TPEF file, then the data block size will be 8 bytes.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 43/60

r_offset

r_symbol

. . .

instruction
element st_name

st_value

st_size

. . .

st_section

code section

data block

data section(1)

(2)

(3)

sh_link

sh_info

symbol tablerelocation entry

section header

17. Line number section

Line number sections (sh_type SHT_LINENO) contain auxiliary information that can
be used by symbolic debuggers to debug code at the source level. When present, the
line number section contains a line number entry for every source line that can have a
symbolic debugger breakpoint.
The format of the line number entries and the structure of the line number section are
debugger-dependent.
The following format is proposed for the implementation of the TTA Design
Framework, TUT.
The line numbers are grouped by function and are relative to a given function (this
format is taken from COFF standard).

Fields Bytes Description

offset 4 Either section offset into the first instruction of the line, or
the index of the symbol for a procedure symbol.

line_num 2 Line number, zero if this entry represents a procedure.

The first 2 bytes of member sh_info of a line number section contain the identifier of
the section (of type SHT_CODE) the offsets of line number entries refer to.

[open issues: how to load/track the source code, how to locate procedure entries
within it]

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 44/60

18. String Table section

String table sections (sh_type SHT_STRTAB) hold null-terminated character
sequences, commonly called strings. The TPEF file uses these strings to represent
symbol and section names and other section-specific information. Strings are
referenced to as indices into the string table section.

The first byte, which is index zero, is defined to hold a null character (ASCII code
0x00). The last byte of a string table is defined to hold a null character, ensuring
proper termination for all strings.

A string whose index is zero specifies either no name or a null name, depending on
the context. An empty string table section is permitted; the sh_size member of its
section header contains zero. Non-zero indexes are invalid for an empty string table.
(Adapted from ELF specification.)

A string table index may refer to any byte in the section. A string may appear more
than once; references to substrings may exist; and a single string may be referenced
multiple times. Unreferenced strings also are allowed.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 45/60

19. Debug section

The format of debug sections (sh_type SHT_DEBUG) is out of the scope of this
specification and is dependent on the symbolic debugger used.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 46/60

20. Machine Description File section

The optional machine description file section (sh_type SHT_MD) contains the
specification of the target processor architecture that is expected to run the TTA
program described in the file.

At most one Machine Description File section can be present.

The format of the MDF section is described in “MDF – Machine Description File
Format for a New TTA Design Framework” document ().

When the MDF section is not present, the path name to the machine description file is
expected to be stored in a special symbol table entry.

The machine description is needed to exactly reconstruct the parallel TTA program;
the information stored in a TPEF file is incomplete.

[discuss: how to deal with mismatch between machine resource table and MDF]

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 47/60

21. Program Profile section

Program profile sections contain the profiles of a program run. The profile data
consists of a table of fixed-size entries. Each entry contains an execution count and
specifies how many times a given program element has been repeated during the
program run.
A code section may have several independent profile sections, each containing the
profile data of a different run of the program.
There are two types of execution counts:

1. Procedure execution counts.
2. Basic block execution counts.

The first part of the section data area contains all procedure execution counts, and is
followed by all the basic block execution counts. Both procedures execution counts
and block execution counts are stored in the same order in which they are laid out in
the memory image.
For each procedure contained in the program, n execution counts are stored. The
number n is fixed and depends on the latency of the transport pipeline of the target
processor architecture. For details on this parameter, see the MDF specification
document [1]. The execution count number 1 refers to the first instruction of the
procedure (also called the procedure entry point); the execution count number 2 refers
to the second instruction, and so on up to instruction number n from the procedure
entry point.
For each basic block contained in the program one execution count is stored.
Format of execution counts. An execution count is a 64-bit integer word. All bits
except the most significant are used to represent a 63-bit unsigned integer number in
base 2. The most significant bit of the execution count must be ignored. Its use is
reserved for future extensions.
Consistency checks. The minimal consistency checks that a TEPF profile section
reader should perform are listed below:

1. The number of execution counts per procedure, n, must match the transport
pipeline latency of the target processor. In case of unscheduled code, the
transport pipeline latency is set to 1.

2. The number of procedure execution counts must be n times the number of
procedures in the TTA program.

3. The number of basic block execution counts must be equal to the number of
basic blocks that make up the TTA program.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 48/60

22. Data Encoding and Alignment Rules

All data contained in the file, be it file structure, auxiliary information or program
information, is stored in big endian format. The format in which the TTA programs
are stored is independent from the data encoding of the target processor. Even the
initialisation data need not reflect the actual bit image of the data in the target
processor.

Simple alignment rules are applied when the bit width of the minimum addressable
word (asp_mau) or the natural word (asp_wsize) defined in an address space are not
8, respectively 32 bits. An n-bits wide minimum addressable word is represented with
the smallest number of bytes b such that 8b ≥ n. A natural word consisting of w n-bits
words is represented with w vectors of b bytes. Since all references in the program
sections are required to be n-bit words addresses, a machine address A corresponds to
the file byte offset (relative to the section base address) b (A – base).

This alignment rule breaks down completely if the data encoding departs from 2's
complement and IEEE-754 floating-point formats. For example, a 32-bit (or less)
custom floating-point format may be defined which requires many more bits to be
represented without precision loss in the host architecture format. In this case, the
assumption that w words, each 8b bits long, are sufficient to represent n-bit words on
the target architecture may not hold. [use symbol table entries to solve this problem?]

Thus, accessing data words using alignment rules may be the only option left, if
symbolic information is not available, but should not be relied upon [force symbolic
information to be present?]. The correct way to access any section element
corresponding to an entity in the program, be it a data word or an instruction (field),
is to lookup the symbol table entry (see Symbol Table section) corresponding to the
machine address and retrieve the correct file offset to the referred entity.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 49/60

23. Unscheduled Target TTA

Unscheduled (sequential) TTA code is not different from parallel TTA code in any
fundamental way. Also the unscheduled TTA code depends on a target processor
architecture. However, while the target architecture of scheduled code is specified by
an ADF, the target architecture of unscheduled code is unique and is implied.

The target architecture of unscheduled code used by TTA_TUT architecture template
is characterised by:

1. One transport bus (resource element 0x0000 of type MRT_BUS). The bus
identification number zero is reserved to a special bus that identifies moves for
which no physical bus is actually assigned.

2. One “universal” function unit that can perform all operations6 in the program and
contains all special registers (resource element 0x0000 of type MRT_UNIT). The
unit identifier zero marks moves to operands and from results of operations that
have not been assigned to a function unit fot the target processor.

3. One register file for integer variables (resource element 0x0080 of type
MRT_RF). Register file identifier 0x80 is reserved to a special, unbounded
register file that represents a pool of integer variables of predefined bit width.

4. One register file for Boolean variables (resource element 0x0081 of type
MRT_RF). Register file identifier 0x81 is reserved to a special, unbounded
register file that represents a pool of Boolean, 1-bit variables.

5. One register file for floating-point variables (resource element 0x0082 of type
MRT_RF). Register file identifier 0x82 is reserved to a special, unbounded
register file that represents a pool of floating-point variables of predefined bit
width.

6. No long immediate registers: immediates values (of any bit width) are encoded in
move source fields and are identified by resource element 0x0000 of type
MRT_IMM. The immediate unit identifier zero does not represent an immediate
unit. It signals that the immediate is in-line, that is, encoded in the source field of
the same move that reads the immediate.

7. No bridge registers.

The exact specification of what is a “well-formed” sequential TTA may be subject to
additional constraints. Such constraints, required by the tools that perform code
analysis and parallel code generation, are not part of TPEF specification. For
example, it may be convenient to restrict predication to jump operations and to admit
only the Boolean register as guard term.

23.1. TPEF Move Format

In unscheduled moves, the source field is interpreted in a slightly different manner:

• Source general-purpose registers are actually program variables that represent

6 With a one-cycle latency between trigger and result move.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 50/60

temporary values.

• Output ports of the unique function unit are actually results of an operation.

• Immediate identifiers always represent in-line constants (immediate), never an
immediate register (encoded by an instruction template).

The destination field of unscheduled moves is interpreted along the same lines of the
source field (the destination function unit ports actually represent operation inputs).

23.2. Address Spaces

The target memory system of the sequential TTA code is characterised by two
independent address spaces. One address space is dedicated to program code; the
other is dedicated to all program data (initialised, not initialised, stack allocated or
dynamically allocated at run time). The address spaces are typically (but not
necessarily) characterised by the following parameters:

• start address: 0

• MAU: 8 bits

• natural word length: 4 MAU’s (data), 1 MAU (code)

• word alignment: 4 MAU’s (data), 1 MAU (code)

The choice of 8-bit MAU reflects the address space characteristics usually assumed
by existing compilers. The instruction word length usually expected is 8 MAU’s and
reflects the size of sequential TTA moves generated by an existing frontend compiler.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 51/60

Appendix

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 52/60

24. Glossary

FU Functional Unit

MAU Minimum Addressable Unit (of an address space)

ADF Architecture Description File

ADFF Architecture Description File Format

RF Register File

TPEF TTA Program Exchange Format

TTA Transport Triggered Architecture

TUT Tampere University of Technology

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 53/60

25. Further Ideas

25.1. Extensible Fields

An extensible field is a variable-length field that can represent a number in the
unsigned range 0-32767. An extensible field can be one or two bytes long. Numbers
in the range 0-127 are represented by a single byte, numbers in the range 128-32767
are represented by two bytes, as depicted below.

1 7 8

0

1

25.2. Immediate Sections

Introduce an immediate section where all immediates used by the program are stored.
This section could be used by some instruction encoder/compressor, that store
immediates in a small local memory and avoid direct encoding in the instruction
stream.

25.3. Environment Section

Introduce a section to store information useful to define and setup the environment in
which the TTA program is expected to run. Such information includes, for example,
how to initialise the stack pointer register.

25.4. Address Space Reference Section

(17.03.2004)
Some source or destination moves represent values of computed (nonconstant)
memory addresses. For correct interpretation of a TTA program that uses several
address spaces, the address space of such nonconstant addresses must be somehow
computed and stored permanently within the TPEF file. Unlike symbols that refer to
constant addresses, computed addresses do not get any symbol table entry or
relocation entry.
Introduce section to store address space information referring to move
sources/destinations. A pre-scheduling pass must compute this information by
propagating the constant terms that are at the bottom of the expression of a computed
address.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 54/60

25.5. Multicasting Support

(17.30.2004)
Extend the source id space of moves with a reserved identifier for multicasting (it
means: continues to use the same source of the previous instruction element). By
combining one move with normal source and several moves with this reserved id it is
possible to define a transport from one source to multiple destinations.

25.6. Symbol Table Entry Extension

(19.04.2004)

In order to speedup linkage and processing of linked TEPF files, every symbol table
could allow for two meanings of the st_value member of relocatable symbols:

1. In object files (with unresolved references), it represents the section offset relative
to the section given by member st_section.

2. In linked files (without unresolved references), it represents the actual address
where the symbol is located in the address space. The address space is still
implied by the section of the symbol, given by member st_section.

The first encoding is convenient when it is necessary to relocate sections (that is, start
address, given by sh_addr is changed) without modifying them. In this case, no
relocation of symbol’s value is necessary.

The second encoding is convenient when the section that contains the symbol is
combined with another section (and thus destroyed), but the memory addresses of the
section elements are unchanged. However, in this case it may be necessary to update
member st_section of each symbol.

Member of st_section, when the second encoding is used, could contain the address
space identifier instead of the section. This saves from the task of updating st_section
member when a section is merged with another, but has the inconvenience of using
one more member for two completely different purposes.

If the meaning of member st_section is maintained, then another type of
inconvenience is introduced: the section of the symbol may be correct, but the address
of the symbol stored in the st_value may be out of range.

A bit flag of member st_other could signal the type of symbol encoding.

25.7. Relocation Section with Addend Member

Certain processor architectures and object formats support relocation entries with one
additional member, usually termed addend. This member contains the value that
requires relocation. Usually, when the value is stored in the addend, the location that
contains the pointer contains zeroes.

The main advantage of relocation entries with addend member is that all the terms
needed to compute the relocation are available in the relocation entry. Access to the
section being relocated becomes unnecessary. In case of chunked addresses, a further
advantage is that the entire value to be relocated is stored in the addend of every

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 55/60

relocation entry for that chunked symbol reference. This reduces the computations
needed to relocate a chunked address, since bit carry or borrow that can occur
between chunks is handled automatically.

The main disadvantage of relocation entries is that they limit the bit width of the
addresses to be relocated to the (fixed) size of the addend, which for practical reasons
should be smaller than the maximum immediate size (16 bytes). Typically, the addend
is 4 bytes long in object formats where it is present.

25.8. Support for PC-Relative Relocation

On traditional linkable or object file formats, PC-relative symbol references are
treated as nonrelocatable addresses. However, this limits the use of PC-relative
addressing in the program code to compile-time resolved addresses. If addresses that
may be resolved at link time were admitted, then also PC-relative addresses would
need adjustment. PC-relative relocation would be required only if the displacement
between the location of the reference and the target address changes.

Relocation of PC-relative references poses a problem. The displacement is computed
with respect of the address of the location where the reference is made. However, the
location pointer at by r_offset is the location where the reference is stored. This
location does not affect the displacement.

Example: Given the following code:

0x100: . . . [d -> im1]
0x108: . . .
0x110: im1 -> jump

A displacement d is stored in location 0x100 as an immediate, but the immediate
value is used by an operation located at 0x110. The target address is computed as
0x110 + d, not as 0x100 + d. However, the relocation entry r_offset member gives the
location 0x100, where the target address is encoded, because that is where the
relocation adjustment takes place.

A possible solution to this problem is to provide an additional, contiguous relocation
entry that specifies the location of the PC-relative reference. This entry could be
identified by member r_size=0 and could either follow or precede the other relocation
entries of the symbol reference.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 56/60

26. Notes

The following notes are not strictly part of the TTA Program Exchange Format
specification, but give useful insights on the problems and implications of the design
decisions taken.

Information stored to represent TTA instructions. The information contained in a TPEF file can
accurately describe the visible state and the behavior of parallel TTA programs, not the precise
architecture on which it runs. In other words, the information stored in the file does not need to
completely specify which target architecture resources are assigned to every instruction, move, or
immediate. (For one thing, redundant specifications can be left out of the file without reducing the
accuracy of the program representation.) In practice, the move member does not contain precise
information on the transport network connections used to route the data transport specified by moves.

Resource assignment need not be specified explicitly when, given the target processor architecture for
which the TTA program was compiled, the assignment of resources that are not specified in the TPEF
file is “trivial”. Trivial hear means that either the assignment is unique (thus no information is needed)
or that the choice is irrelevant. The latter case occurs for orthogonal target architecture resources.
[discuss: Such is not the case is some cases, for example when the connectivity of the transport
network is restricted.]

An implication of this aspect of the TTA-PE format is that a TTA parallel program could constitute a
valid program for target processors other than the original target for which the code was scheduled. In
other words, a parallel TTA program stored in a TPEF file does not dictate unambiguously its target
processor architecture, but rather drastically restricts the set of target processor architectures that can
run it.

Interpretation of relocation offset. In other executable/object formats, such as ELF, the interpretation
of the r_offset field of a relocation entry is “virtual address”. Using virtual addresses to refer to
relocation sites of a program section is very problematic for TPEF code sections, because the
instructions (CODE section entries) are stored using a variable number of bytes. Locating an
instruction given its address in the memory image requires scanning the entire code section. Storing
section (byte) offsets instead is much more efficient.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 57/60

27. Resolved Design Issues

During the design of the TTA Program Exchange Format, many issues had to be
confronted. Most issues required several design alternatives to be considered. This
section details the reasons that motivated the design decisions taken.
1. Use of file offsets instead of (virtual) addresses to refer to entities contained in a program section.

Some binary formats (COFF, for example) store references to program entities --such as
instructions (operands) and data words-- as virtual addresses. These addresses are expressed relative
to the base address of the section that contains the entity and represent its address in the memory.
The use of virtual addresses is not easily applicable to TPEF files. [CHECK: First of all, the entries
of some program sections may be stored using a variable size encoding.] Second, the information
in a section entity may be stored in a form that does not reflect the actual memory layout on the
target machine. For these reasons, there is no simple linear relation between entry addresses in
memory and file offsets into the program section. File offsets, on the other hand, are unambiguous
and are not affected by the binary encoding and the data size of the program elements nor by the
form in which program elements are stored in the file. These reasons justify the use file offsets to
refer to any element in a program section.

2. Encoding relocation information in separate section instead than as part of each program section.
Some binary formats (notably COFF) store a table of relocation entries for a given program section
at the end of the section itself. Other formats, like ELF, store the relocation table for a given
program section into a separate relocation section. By keeping a separate section for each relocation
table: (1) information is kept clearly separated, tools that do not use relocation do not need to be
aware of the relocation table, (2) the format of the single sections is simpler, (3) it is possible to
strip relocation information without having to modify or even analyse the corresponding program
section.

3. Use of explicit size fields for every data structure of the file. The size of every data structure
specified in TTA-PE file format is explicitly declared in dedicated fields. The file format
identification structure, the file header and the section headers, for example, all contain such fields.
The size of a structure may be declared in a size field of the structure itself or in a size field of a
structure at a higher hierarchical level. The size of a section element, for example, is not contained
in each element, since this would be wasteful, but in the section that contains the element. Notice
that size is not applicable to variable-length data structures. In this case, the size field is ignored. By
referring to the declared sizes to locate the fields in the data structures, compatibility with future
extensions is assured, on condition that the extensions do not affect the interpretation of existing
data structures. This design decision and its motivation are inspired by the ELF file format.

4. Choosing a target architecture for sequential TTA programs that fully fits the architecture template
of the target processors. By clearly defining the target architecture of the sequential code in terms
of the target processor templates, parallel and unscheduled TTA code can be conveniently
represented using the same data format, while at the same time the data format is kept simple and
regular.

5. Reserving identification numbers of processor components to the target architecture for sequential
TTA programs. By reserving a special identification number to any processor component that can
be referred to (as assigned hardware resource) in a move, it is possible to store and easily difference
unscheduled and parallel code within a TTA program. It is also possible to represent partially
scheduled moves, whereby some hardware resources have been assigned, while others haven’t.

6. Avoid use of bit fields. For portability reasons, bit fields are not used in TPEF. The values of all flag
combinations are explicitly indicated as numbers. The MSB of an 8-bit byte, for example, is
indicated by “0x80”, and should be tested by masking with the such number.

7. Relocation entries contain a pointer to the first byte of the element that contains the address to be
relocated, rather than a pointer to the (first byte) of the raw data representing the address. This
choice is in contrast to that of popular object and link formats (a.out, ELF, COFF). In TPEF, this
choice is preferable because (1) it is safer (more checks that the element containing the reference is
well formed) and (2) works also with variable encoding of the preceding bits of data.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 58/60

8. Invalid (null) section, address space. The mandatory invalid section of type SHT_NULL and the
Invalid Address Space identifier zero parallel the concept of Null Object common in object oriented
design community. It also matches an ELF design criterion.

9. Unique section identification numbers across entire file. The use of a unique number (rather than,
for example, a unique number for a program section and all auxiliary sections referring to it) has
practical motivations: it should make lookup of individual sections easier, since it does not require
to look into the sh_type flags to tell one section from another. A possible disadvantage is that an
additional field is required in each auxiliary program section, to define the referred program section.

10. Single Architecture Description File. A TPEF file can contain program data for one target
architecture only. Therefore, there can be at most one machine resource table and one architecture
description file section.

11. Global address space table section. An alternative would be to have one address space section for
each address space. In this case, the section identifier of the address space section could be used.
This alternative was rejected because it would mix section ids with address space ids.

12. Reserved data items for undefined references. To facilitate development of robust implementations
of TPEF, whenever a reference to a given type of data items may be undefined or not applicable, a
special instance of the data type must be reserved for such references. This enables implementation
of such reference as a pointer or reference to a well-formed (albeit, special) data structure, rather
than forcing a NULL pointer or an illegal value. The object-oriented equivalent to this guideline is
the null object design pattern.

TTA Program Exchange Format Andrea Cilio Rev 0.18.1 59/60

1 A. Cilio, H. Schot, and J. Janssen: “Machine Definition Format for a New TTA Design
Framework”, S-003.

2 A. Cilio: “Processor Architecture Specification for TTA Codesign Environment”.
3 A. Cilio: “TCE Architecture Template Programming Interface Fuctional Requirements”, S-010.

	1.Summary
	2.Introduction
	3.Requirements
	4.Format Overview
	5.File Header
	6.Section Header
	7.TPEF sections
	7.1.Section Format and Constraints
	7.2.Undefined References to Section Elements

	8.General Properties and Constraints
	8.1.Range Limits
	8.2.Bit Width of Encoded References
	8.3.Undefined References

	9.Null Section
	10.Address Space Table section
	11.Code section
	11.1.Immediate Element
	11.2.Move Element

	12.Processor Resource Table section
	13.Initialised data section
	14.Uninitialised data section
	15.Symbol Table section
	15.1.Symbol entries

	16.Relocation section
	17.Line number section
	18.String Table section
	19.Debug section
	20.Machine Description File section
	21.Program Profile section
	22.Data Encoding and Alignment Rules
	23.Unscheduled Target TTA
	23.1.TPEF Move Format
	23.2.Address Spaces

	24.Glossary
	25.Further Ideas
	25.1.Extensible Fields
	25.2.Immediate Sections
	25.3.Environment Section
	25.4.Address Space Reference Section
	25.5.Multicasting Support
	25.6.Symbol Table Entry Extension
	25.7.Relocation Section with Addend Member
	25.8.Support for PC-Relative Relocation

	26.Notes
	27.Resolved Design Issues

